Metamath Proof Explorer


Theorem fvmpt3i

Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvmpt3.a
|- ( x = A -> B = C )
fvmpt3.b
|- F = ( x e. D |-> B )
fvmpt3i.c
|- B e. _V
Assertion fvmpt3i
|- ( A e. D -> ( F ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvmpt3.a
 |-  ( x = A -> B = C )
2 fvmpt3.b
 |-  F = ( x e. D |-> B )
3 fvmpt3i.c
 |-  B e. _V
4 3 a1i
 |-  ( x e. D -> B e. _V )
5 1 2 4 fvmpt3
 |-  ( A e. D -> ( F ` A ) = C )