Metamath Proof Explorer


Theorem fvmpt4d

Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses fvmpt4d.1
|- F/_ x A
fvmpt4d.2
|- ( ph -> B e. C )
fvmpt4d.3
|- ( ph -> x e. A )
Assertion fvmpt4d
|- ( ph -> ( ( x e. A |-> B ) ` x ) = B )

Proof

Step Hyp Ref Expression
1 fvmpt4d.1
 |-  F/_ x A
2 fvmpt4d.2
 |-  ( ph -> B e. C )
3 fvmpt4d.3
 |-  ( ph -> x e. A )
4 1 fvmpt2f
 |-  ( ( x e. A /\ B e. C ) -> ( ( x e. A |-> B ) ` x ) = B )
5 3 2 4 syl2anc
 |-  ( ph -> ( ( x e. A |-> B ) ` x ) = B )