Metamath Proof Explorer


Theorem fvmptd

Description: Deduction version of fvmpt . (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 31-Aug-2015) (Proof shortened by AV, 29-Mar-2024)

Ref Expression
Hypotheses fvmptd.1
|- ( ph -> F = ( x e. D |-> B ) )
fvmptd.2
|- ( ( ph /\ x = A ) -> B = C )
fvmptd.3
|- ( ph -> A e. D )
fvmptd.4
|- ( ph -> C e. V )
Assertion fvmptd
|- ( ph -> ( F ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvmptd.1
 |-  ( ph -> F = ( x e. D |-> B ) )
2 fvmptd.2
 |-  ( ( ph /\ x = A ) -> B = C )
3 fvmptd.3
 |-  ( ph -> A e. D )
4 fvmptd.4
 |-  ( ph -> C e. V )
5 nfv
 |-  F/ x ph
6 nfcv
 |-  F/_ x A
7 nfcv
 |-  F/_ x C
8 1 2 3 4 5 6 7 fvmptdf
 |-  ( ph -> ( F ` A ) = C )