Metamath Proof Explorer


Theorem fvmptd2f

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017) (Proof shortened by AV, 19-Jan-2022)

Ref Expression
Hypotheses fvmptd2f.1
|- ( ph -> A e. D )
fvmptd2f.2
|- ( ( ph /\ x = A ) -> B e. V )
fvmptd2f.3
|- ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) )
fvmptd2f.4
|- F/_ x F
fvmptd2f.5
|- F/ x ps
Assertion fvmptd2f
|- ( ph -> ( F = ( x e. D |-> B ) -> ps ) )

Proof

Step Hyp Ref Expression
1 fvmptd2f.1
 |-  ( ph -> A e. D )
2 fvmptd2f.2
 |-  ( ( ph /\ x = A ) -> B e. V )
3 fvmptd2f.3
 |-  ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) )
4 fvmptd2f.4
 |-  F/_ x F
5 fvmptd2f.5
 |-  F/ x ps
6 nfv
 |-  F/ x ph
7 1 2 3 4 5 6 fvmptd3f
 |-  ( ph -> ( F = ( x e. D |-> B ) -> ps ) )