Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017) (Proof shortened by AV, 19-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptd2f.1 | |- ( ph -> A e. D ) | |
| fvmptd2f.2 | |- ( ( ph /\ x = A ) -> B e. V ) | ||
| fvmptd2f.3 | |- ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) ) | ||
| fvmptd2f.4 | |- F/_ x F | ||
| fvmptd2f.5 | |- F/ x ps | ||
| Assertion | fvmptd2f | |- ( ph -> ( F = ( x e. D |-> B ) -> ps ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvmptd2f.1 | |- ( ph -> A e. D ) | |
| 2 | fvmptd2f.2 | |- ( ( ph /\ x = A ) -> B e. V ) | |
| 3 | fvmptd2f.3 | |- ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) ) | |
| 4 | fvmptd2f.4 | |- F/_ x F | |
| 5 | fvmptd2f.5 | |- F/ x ps | |
| 6 | nfv | |- F/ x ph | |
| 7 | 1 2 3 4 5 6 | fvmptd3f | |- ( ph -> ( F = ( x e. D |-> B ) -> ps ) ) |