Description: Deduction version of fvmpt . (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptd3.1 | |- F = ( x e. D |-> B ) |
|
| fvmptd3.2 | |- ( x = A -> B = C ) |
||
| fvmptd3.3 | |- ( ph -> A e. D ) |
||
| fvmptd3.4 | |- ( ph -> C e. V ) |
||
| Assertion | fvmptd3 | |- ( ph -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd3.1 | |- F = ( x e. D |-> B ) |
|
| 2 | fvmptd3.2 | |- ( x = A -> B = C ) |
|
| 3 | fvmptd3.3 | |- ( ph -> A e. D ) |
|
| 4 | fvmptd3.4 | |- ( ph -> C e. V ) |
|
| 5 | 2 1 | fvmptg | |- ( ( A e. D /\ C e. V ) -> ( F ` A ) = C ) |
| 6 | 3 4 5 | syl2anc | |- ( ph -> ( F ` A ) = C ) |