Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptd2f.1 |
|- ( ph -> A e. D ) |
2 |
|
fvmptd2f.2 |
|- ( ( ph /\ x = A ) -> B e. V ) |
3 |
|
fvmptd2f.3 |
|- ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) ) |
4 |
|
fvmptd3f.4 |
|- F/_ x F |
5 |
|
fvmptd3f.5 |
|- F/ x ps |
6 |
|
fvmptd3f.6 |
|- F/ x ph |
7 |
|
nfmpt1 |
|- F/_ x ( x e. D |-> B ) |
8 |
4 7
|
nfeq |
|- F/ x F = ( x e. D |-> B ) |
9 |
8 5
|
nfim |
|- F/ x ( F = ( x e. D |-> B ) -> ps ) |
10 |
1
|
elexd |
|- ( ph -> A e. _V ) |
11 |
|
isset |
|- ( A e. _V <-> E. x x = A ) |
12 |
10 11
|
sylib |
|- ( ph -> E. x x = A ) |
13 |
|
fveq1 |
|- ( F = ( x e. D |-> B ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) |
14 |
|
simpr |
|- ( ( ph /\ x = A ) -> x = A ) |
15 |
14
|
fveq2d |
|- ( ( ph /\ x = A ) -> ( ( x e. D |-> B ) ` x ) = ( ( x e. D |-> B ) ` A ) ) |
16 |
1
|
adantr |
|- ( ( ph /\ x = A ) -> A e. D ) |
17 |
14 16
|
eqeltrd |
|- ( ( ph /\ x = A ) -> x e. D ) |
18 |
|
eqid |
|- ( x e. D |-> B ) = ( x e. D |-> B ) |
19 |
18
|
fvmpt2 |
|- ( ( x e. D /\ B e. V ) -> ( ( x e. D |-> B ) ` x ) = B ) |
20 |
17 2 19
|
syl2anc |
|- ( ( ph /\ x = A ) -> ( ( x e. D |-> B ) ` x ) = B ) |
21 |
15 20
|
eqtr3d |
|- ( ( ph /\ x = A ) -> ( ( x e. D |-> B ) ` A ) = B ) |
22 |
21
|
eqeq2d |
|- ( ( ph /\ x = A ) -> ( ( F ` A ) = ( ( x e. D |-> B ) ` A ) <-> ( F ` A ) = B ) ) |
23 |
22 3
|
sylbid |
|- ( ( ph /\ x = A ) -> ( ( F ` A ) = ( ( x e. D |-> B ) ` A ) -> ps ) ) |
24 |
13 23
|
syl5 |
|- ( ( ph /\ x = A ) -> ( F = ( x e. D |-> B ) -> ps ) ) |
25 |
6 9 12 24
|
exlimdd |
|- ( ph -> ( F = ( x e. D |-> B ) -> ps ) ) |