| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptdv2.1 |  |-  ( ph -> A e. D ) | 
						
							| 2 |  | fvmptdv2.2 |  |-  ( ( ph /\ x = A ) -> B e. V ) | 
						
							| 3 |  | fvmptdv2.3 |  |-  ( ( ph /\ x = A ) -> B = C ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( x e. D |-> B ) = ( x e. D |-> B ) ) | 
						
							| 5 | 1 | elexd |  |-  ( ph -> A e. _V ) | 
						
							| 6 |  | isset |  |-  ( A e. _V <-> E. x x = A ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ph -> E. x x = A ) | 
						
							| 8 | 2 | elexd |  |-  ( ( ph /\ x = A ) -> B e. _V ) | 
						
							| 9 | 3 8 | eqeltrrd |  |-  ( ( ph /\ x = A ) -> C e. _V ) | 
						
							| 10 | 7 9 | exlimddv |  |-  ( ph -> C e. _V ) | 
						
							| 11 | 4 3 1 10 | fvmptd |  |-  ( ph -> ( ( x e. D |-> B ) ` A ) = C ) | 
						
							| 12 |  | fveq1 |  |-  ( F = ( x e. D |-> B ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( F = ( x e. D |-> B ) -> ( ( F ` A ) = C <-> ( ( x e. D |-> B ) ` A ) = C ) ) | 
						
							| 14 | 11 13 | syl5ibrcom |  |-  ( ph -> ( F = ( x e. D |-> B ) -> ( F ` A ) = C ) ) |