Metamath Proof Explorer


Theorem fvmptelcdmf

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fvmptelcdmf.a
|- F/_ x A
fvmptelcdmf.c
|- F/_ x C
fvmptelcdmf.f
|- ( ph -> ( x e. A |-> B ) : A --> C )
Assertion fvmptelcdmf
|- ( ( ph /\ x e. A ) -> B e. C )

Proof

Step Hyp Ref Expression
1 fvmptelcdmf.a
 |-  F/_ x A
2 fvmptelcdmf.c
 |-  F/_ x C
3 fvmptelcdmf.f
 |-  ( ph -> ( x e. A |-> B ) : A --> C )
4 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
5 1 2 4 fmptff
 |-  ( A. x e. A B e. C <-> ( x e. A |-> B ) : A --> C )
6 3 5 sylibr
 |-  ( ph -> A. x e. A B e. C )
7 6 r19.21bi
 |-  ( ( ph /\ x e. A ) -> B e. C )