Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmptelcdmf.a | |- F/_ x A |
|
fvmptelcdmf.c | |- F/_ x C |
||
fvmptelcdmf.f | |- ( ph -> ( x e. A |-> B ) : A --> C ) |
||
Assertion | fvmptelcdmf | |- ( ( ph /\ x e. A ) -> B e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelcdmf.a | |- F/_ x A |
|
2 | fvmptelcdmf.c | |- F/_ x C |
|
3 | fvmptelcdmf.f | |- ( ph -> ( x e. A |-> B ) : A --> C ) |
|
4 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
5 | 1 2 4 | fmptff | |- ( A. x e. A B e. C <-> ( x e. A |-> B ) : A --> C ) |
6 | 3 5 | sylibr | |- ( ph -> A. x e. A B e. C ) |
7 | 6 | r19.21bi | |- ( ( ph /\ x e. A ) -> B e. C ) |