Metamath Proof Explorer


Theorem fvmptelrn

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis fvmptelrn.1
|- ( ph -> ( x e. A |-> B ) : A --> C )
Assertion fvmptelrn
|- ( ( ph /\ x e. A ) -> B e. C )

Proof

Step Hyp Ref Expression
1 fvmptelrn.1
 |-  ( ph -> ( x e. A |-> B ) : A --> C )
2 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
3 2 fmpt
 |-  ( A. x e. A B e. C <-> ( x e. A |-> B ) : A --> C )
4 1 3 sylibr
 |-  ( ph -> A. x e. A B e. C )
5 4 r19.21bi
 |-  ( ( ph /\ x e. A ) -> B e. C )