Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvmptelrn.1 | |- ( ph -> ( x e. A |-> B ) : A --> C ) |
|
Assertion | fvmptelrn | |- ( ( ph /\ x e. A ) -> B e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelrn.1 | |- ( ph -> ( x e. A |-> B ) : A --> C ) |
|
2 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
3 | 2 | fmpt | |- ( A. x e. A B e. C <-> ( x e. A |-> B ) : A --> C ) |
4 | 1 3 | sylibr | |- ( ph -> A. x e. A B e. C ) |
5 | 4 | r19.21bi | |- ( ( ph /\ x e. A ) -> B e. C ) |