| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptex.1 |  |-  F = ( x e. A |-> B ) | 
						
							| 2 |  | fvmptex.2 |  |-  G = ( x e. A |-> ( _I ` B ) ) | 
						
							| 3 |  | csbeq1 |  |-  ( y = C -> [_ y / x ]_ B = [_ C / x ]_ B ) | 
						
							| 4 |  | nfcv |  |-  F/_ y B | 
						
							| 5 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ B | 
						
							| 6 |  | csbeq1a |  |-  ( x = y -> B = [_ y / x ]_ B ) | 
						
							| 7 | 4 5 6 | cbvmpt |  |-  ( x e. A |-> B ) = ( y e. A |-> [_ y / x ]_ B ) | 
						
							| 8 | 1 7 | eqtri |  |-  F = ( y e. A |-> [_ y / x ]_ B ) | 
						
							| 9 | 3 8 | fvmpti |  |-  ( C e. A -> ( F ` C ) = ( _I ` [_ C / x ]_ B ) ) | 
						
							| 10 | 3 | fveq2d |  |-  ( y = C -> ( _I ` [_ y / x ]_ B ) = ( _I ` [_ C / x ]_ B ) ) | 
						
							| 11 |  | nfcv |  |-  F/_ y ( _I ` B ) | 
						
							| 12 |  | nfcv |  |-  F/_ x _I | 
						
							| 13 | 12 5 | nffv |  |-  F/_ x ( _I ` [_ y / x ]_ B ) | 
						
							| 14 | 6 | fveq2d |  |-  ( x = y -> ( _I ` B ) = ( _I ` [_ y / x ]_ B ) ) | 
						
							| 15 | 11 13 14 | cbvmpt |  |-  ( x e. A |-> ( _I ` B ) ) = ( y e. A |-> ( _I ` [_ y / x ]_ B ) ) | 
						
							| 16 | 2 15 | eqtri |  |-  G = ( y e. A |-> ( _I ` [_ y / x ]_ B ) ) | 
						
							| 17 |  | fvex |  |-  ( _I ` [_ C / x ]_ B ) e. _V | 
						
							| 18 | 10 16 17 | fvmpt |  |-  ( C e. A -> ( G ` C ) = ( _I ` [_ C / x ]_ B ) ) | 
						
							| 19 | 9 18 | eqtr4d |  |-  ( C e. A -> ( F ` C ) = ( G ` C ) ) | 
						
							| 20 | 1 | dmmptss |  |-  dom F C_ A | 
						
							| 21 | 20 | sseli |  |-  ( C e. dom F -> C e. A ) | 
						
							| 22 |  | ndmfv |  |-  ( -. C e. dom F -> ( F ` C ) = (/) ) | 
						
							| 23 | 21 22 | nsyl5 |  |-  ( -. C e. A -> ( F ` C ) = (/) ) | 
						
							| 24 |  | fvex |  |-  ( _I ` B ) e. _V | 
						
							| 25 | 24 2 | dmmpti |  |-  dom G = A | 
						
							| 26 | 25 | eleq2i |  |-  ( C e. dom G <-> C e. A ) | 
						
							| 27 |  | ndmfv |  |-  ( -. C e. dom G -> ( G ` C ) = (/) ) | 
						
							| 28 | 26 27 | sylnbir |  |-  ( -. C e. A -> ( G ` C ) = (/) ) | 
						
							| 29 | 23 28 | eqtr4d |  |-  ( -. C e. A -> ( F ` C ) = ( G ` C ) ) | 
						
							| 30 | 19 29 | pm2.61i |  |-  ( F ` C ) = ( G ` C ) |