Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptex.1 |
|- F = ( x e. A |-> B ) |
2 |
|
fvmptex.2 |
|- G = ( x e. A |-> ( _I ` B ) ) |
3 |
|
csbeq1 |
|- ( y = C -> [_ y / x ]_ B = [_ C / x ]_ B ) |
4 |
|
nfcv |
|- F/_ y B |
5 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
6 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
7 |
4 5 6
|
cbvmpt |
|- ( x e. A |-> B ) = ( y e. A |-> [_ y / x ]_ B ) |
8 |
1 7
|
eqtri |
|- F = ( y e. A |-> [_ y / x ]_ B ) |
9 |
3 8
|
fvmpti |
|- ( C e. A -> ( F ` C ) = ( _I ` [_ C / x ]_ B ) ) |
10 |
3
|
fveq2d |
|- ( y = C -> ( _I ` [_ y / x ]_ B ) = ( _I ` [_ C / x ]_ B ) ) |
11 |
|
nfcv |
|- F/_ y ( _I ` B ) |
12 |
|
nfcv |
|- F/_ x _I |
13 |
12 5
|
nffv |
|- F/_ x ( _I ` [_ y / x ]_ B ) |
14 |
6
|
fveq2d |
|- ( x = y -> ( _I ` B ) = ( _I ` [_ y / x ]_ B ) ) |
15 |
11 13 14
|
cbvmpt |
|- ( x e. A |-> ( _I ` B ) ) = ( y e. A |-> ( _I ` [_ y / x ]_ B ) ) |
16 |
2 15
|
eqtri |
|- G = ( y e. A |-> ( _I ` [_ y / x ]_ B ) ) |
17 |
|
fvex |
|- ( _I ` [_ C / x ]_ B ) e. _V |
18 |
10 16 17
|
fvmpt |
|- ( C e. A -> ( G ` C ) = ( _I ` [_ C / x ]_ B ) ) |
19 |
9 18
|
eqtr4d |
|- ( C e. A -> ( F ` C ) = ( G ` C ) ) |
20 |
1
|
dmmptss |
|- dom F C_ A |
21 |
20
|
sseli |
|- ( C e. dom F -> C e. A ) |
22 |
|
ndmfv |
|- ( -. C e. dom F -> ( F ` C ) = (/) ) |
23 |
21 22
|
nsyl5 |
|- ( -. C e. A -> ( F ` C ) = (/) ) |
24 |
|
fvex |
|- ( _I ` B ) e. _V |
25 |
24 2
|
dmmpti |
|- dom G = A |
26 |
25
|
eleq2i |
|- ( C e. dom G <-> C e. A ) |
27 |
|
ndmfv |
|- ( -. C e. dom G -> ( G ` C ) = (/) ) |
28 |
26 27
|
sylnbir |
|- ( -. C e. A -> ( G ` C ) = (/) ) |
29 |
23 28
|
eqtr4d |
|- ( -. C e. A -> ( F ` C ) = ( G ` C ) ) |
30 |
19 29
|
pm2.61i |
|- ( F ` C ) = ( G ` C ) |