Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptf.1 |
|- F/_ x A |
2 |
|
fvmptf.2 |
|- F/_ x C |
3 |
|
fvmptf.3 |
|- ( x = A -> B = C ) |
4 |
|
fvmptf.4 |
|- F = ( x e. D |-> B ) |
5 |
2
|
nfel1 |
|- F/ x C e. _V |
6 |
|
nfmpt1 |
|- F/_ x ( x e. D |-> B ) |
7 |
4 6
|
nfcxfr |
|- F/_ x F |
8 |
7 1
|
nffv |
|- F/_ x ( F ` A ) |
9 |
8 2
|
nfeq |
|- F/ x ( F ` A ) = C |
10 |
5 9
|
nfim |
|- F/ x ( C e. _V -> ( F ` A ) = C ) |
11 |
3
|
eleq1d |
|- ( x = A -> ( B e. _V <-> C e. _V ) ) |
12 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
13 |
12 3
|
eqeq12d |
|- ( x = A -> ( ( F ` x ) = B <-> ( F ` A ) = C ) ) |
14 |
11 13
|
imbi12d |
|- ( x = A -> ( ( B e. _V -> ( F ` x ) = B ) <-> ( C e. _V -> ( F ` A ) = C ) ) ) |
15 |
4
|
fvmpt2 |
|- ( ( x e. D /\ B e. _V ) -> ( F ` x ) = B ) |
16 |
15
|
ex |
|- ( x e. D -> ( B e. _V -> ( F ` x ) = B ) ) |
17 |
1 10 14 16
|
vtoclgaf |
|- ( A e. D -> ( C e. _V -> ( F ` A ) = C ) ) |
18 |
|
elex |
|- ( C e. V -> C e. _V ) |
19 |
17 18
|
impel |
|- ( ( A e. D /\ C e. V ) -> ( F ` A ) = C ) |