Description: Special case of fvmpt for operator theorems. (Contributed by NM, 27-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptmap.1 | |- C e. _V |
|
| fvmptmap.2 | |- D e. _V |
||
| fvmptmap.3 | |- R e. _V |
||
| fvmptmap.4 | |- ( x = A -> B = C ) |
||
| fvmptmap.5 | |- F = ( x e. ( R ^m D ) |-> B ) |
||
| Assertion | fvmptmap | |- ( A : D --> R -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptmap.1 | |- C e. _V |
|
| 2 | fvmptmap.2 | |- D e. _V |
|
| 3 | fvmptmap.3 | |- R e. _V |
|
| 4 | fvmptmap.4 | |- ( x = A -> B = C ) |
|
| 5 | fvmptmap.5 | |- F = ( x e. ( R ^m D ) |-> B ) |
|
| 6 | 3 2 | elmap | |- ( A e. ( R ^m D ) <-> A : D --> R ) |
| 7 | 4 5 1 | fvmpt | |- ( A e. ( R ^m D ) -> ( F ` A ) = C ) |
| 8 | 6 7 | sylbir | |- ( A : D --> R -> ( F ` A ) = C ) |