Metamath Proof Explorer


Theorem fvmptndm

Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020)

Ref Expression
Hypothesis fvmptndm.1
|- F = ( x e. A |-> B )
Assertion fvmptndm
|- ( -. X e. A -> ( F ` X ) = (/) )

Proof

Step Hyp Ref Expression
1 fvmptndm.1
 |-  F = ( x e. A |-> B )
2 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
3 1 2 eqtri
 |-  F = { <. x , y >. | ( x e. A /\ y = B ) }
4 3 fvopab4ndm
 |-  ( -. X e. A -> ( F ` X ) = (/) )