Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptopab.1 |
|- ( z = Z -> ( ph <-> ps ) ) |
2 |
|
fvmptopab.m |
|- M = ( z e. _V |-> { <. x , y >. | ( x ( F ` z ) y /\ ph ) } ) |
3 |
|
fveq2 |
|- ( z = Z -> ( F ` z ) = ( F ` Z ) ) |
4 |
3
|
breqd |
|- ( z = Z -> ( x ( F ` z ) y <-> x ( F ` Z ) y ) ) |
5 |
4 1
|
anbi12d |
|- ( z = Z -> ( ( x ( F ` z ) y /\ ph ) <-> ( x ( F ` Z ) y /\ ps ) ) ) |
6 |
5
|
opabbidv |
|- ( z = Z -> { <. x , y >. | ( x ( F ` z ) y /\ ph ) } = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } ) |
7 |
|
opabresex2 |
|- { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } e. _V |
8 |
6 2 7
|
fvmpt |
|- ( Z e. _V -> ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } ) |
9 |
|
fvprc |
|- ( -. Z e. _V -> ( M ` Z ) = (/) ) |
10 |
|
elopabran |
|- ( z e. { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } -> z e. ( F ` Z ) ) |
11 |
10
|
ssriv |
|- { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } C_ ( F ` Z ) |
12 |
|
fvprc |
|- ( -. Z e. _V -> ( F ` Z ) = (/) ) |
13 |
11 12
|
sseqtrid |
|- ( -. Z e. _V -> { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } C_ (/) ) |
14 |
|
ss0 |
|- ( { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } C_ (/) -> { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } = (/) ) |
15 |
13 14
|
syl |
|- ( -. Z e. _V -> { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } = (/) ) |
16 |
9 15
|
eqtr4d |
|- ( -. Z e. _V -> ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } ) |
17 |
8 16
|
pm2.61i |
|- ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } |