Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptrabfv.f |
|- F = ( x e. _V |-> { y e. ( G ` x ) | ph } ) |
2 |
|
fvmptrabfv.r |
|- ( x = X -> ( ph <-> ps ) ) |
3 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
4 |
3 2
|
rabeqbidv |
|- ( x = X -> { y e. ( G ` x ) | ph } = { y e. ( G ` X ) | ps } ) |
5 |
|
fvex |
|- ( G ` X ) e. _V |
6 |
5
|
rabex |
|- { y e. ( G ` X ) | ps } e. _V |
7 |
4 1 6
|
fvmpt |
|- ( X e. _V -> ( F ` X ) = { y e. ( G ` X ) | ps } ) |
8 |
|
fvprc |
|- ( -. X e. _V -> ( F ` X ) = (/) ) |
9 |
|
fvprc |
|- ( -. X e. _V -> ( G ` X ) = (/) ) |
10 |
9
|
rabeqdv |
|- ( -. X e. _V -> { y e. ( G ` X ) | ps } = { y e. (/) | ps } ) |
11 |
|
rab0 |
|- { y e. (/) | ps } = (/) |
12 |
10 11
|
eqtr2di |
|- ( -. X e. _V -> (/) = { y e. ( G ` X ) | ps } ) |
13 |
8 12
|
eqtrd |
|- ( -. X e. _V -> ( F ` X ) = { y e. ( G ` X ) | ps } ) |
14 |
7 13
|
pm2.61i |
|- ( F ` X ) = { y e. ( G ` X ) | ps } |