| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptrcl.1 |
|- F = ( x e. A |-> B ) |
| 2 |
1
|
dmmptss |
|- dom F C_ A |
| 3 |
2
|
sseli |
|- ( D e. dom F -> D e. A ) |
| 4 |
|
fveq2 |
|- ( y = D -> ( F ` y ) = ( F ` D ) ) |
| 5 |
4
|
sseq1d |
|- ( y = D -> ( ( F ` y ) C_ C <-> ( F ` D ) C_ C ) ) |
| 6 |
5
|
imbi2d |
|- ( y = D -> ( ( A. x e. A B C_ C -> ( F ` y ) C_ C ) <-> ( A. x e. A B C_ C -> ( F ` D ) C_ C ) ) ) |
| 7 |
|
nfcv |
|- F/_ x y |
| 8 |
|
nfra1 |
|- F/ x A. x e. A B C_ C |
| 9 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 10 |
1 9
|
nfcxfr |
|- F/_ x F |
| 11 |
10 7
|
nffv |
|- F/_ x ( F ` y ) |
| 12 |
|
nfcv |
|- F/_ x C |
| 13 |
11 12
|
nfss |
|- F/ x ( F ` y ) C_ C |
| 14 |
8 13
|
nfim |
|- F/ x ( A. x e. A B C_ C -> ( F ` y ) C_ C ) |
| 15 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 16 |
15
|
sseq1d |
|- ( x = y -> ( ( F ` x ) C_ C <-> ( F ` y ) C_ C ) ) |
| 17 |
16
|
imbi2d |
|- ( x = y -> ( ( A. x e. A B C_ C -> ( F ` x ) C_ C ) <-> ( A. x e. A B C_ C -> ( F ` y ) C_ C ) ) ) |
| 18 |
1
|
dmmpt |
|- dom F = { x e. A | B e. _V } |
| 19 |
18
|
reqabi |
|- ( x e. dom F <-> ( x e. A /\ B e. _V ) ) |
| 20 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. _V ) -> ( F ` x ) = B ) |
| 21 |
|
eqimss |
|- ( ( F ` x ) = B -> ( F ` x ) C_ B ) |
| 22 |
20 21
|
syl |
|- ( ( x e. A /\ B e. _V ) -> ( F ` x ) C_ B ) |
| 23 |
19 22
|
sylbi |
|- ( x e. dom F -> ( F ` x ) C_ B ) |
| 24 |
|
ndmfv |
|- ( -. x e. dom F -> ( F ` x ) = (/) ) |
| 25 |
|
0ss |
|- (/) C_ B |
| 26 |
24 25
|
eqsstrdi |
|- ( -. x e. dom F -> ( F ` x ) C_ B ) |
| 27 |
23 26
|
pm2.61i |
|- ( F ` x ) C_ B |
| 28 |
|
rsp |
|- ( A. x e. A B C_ C -> ( x e. A -> B C_ C ) ) |
| 29 |
28
|
impcom |
|- ( ( x e. A /\ A. x e. A B C_ C ) -> B C_ C ) |
| 30 |
27 29
|
sstrid |
|- ( ( x e. A /\ A. x e. A B C_ C ) -> ( F ` x ) C_ C ) |
| 31 |
30
|
ex |
|- ( x e. A -> ( A. x e. A B C_ C -> ( F ` x ) C_ C ) ) |
| 32 |
7 14 17 31
|
vtoclgaf |
|- ( y e. A -> ( A. x e. A B C_ C -> ( F ` y ) C_ C ) ) |
| 33 |
6 32
|
vtoclga |
|- ( D e. A -> ( A. x e. A B C_ C -> ( F ` D ) C_ C ) ) |
| 34 |
33
|
impcom |
|- ( ( A. x e. A B C_ C /\ D e. A ) -> ( F ` D ) C_ C ) |
| 35 |
3 34
|
sylan2 |
|- ( ( A. x e. A B C_ C /\ D e. dom F ) -> ( F ` D ) C_ C ) |
| 36 |
|
ndmfv |
|- ( -. D e. dom F -> ( F ` D ) = (/) ) |
| 37 |
36
|
adantl |
|- ( ( A. x e. A B C_ C /\ -. D e. dom F ) -> ( F ` D ) = (/) ) |
| 38 |
|
0ss |
|- (/) C_ C |
| 39 |
37 38
|
eqsstrdi |
|- ( ( A. x e. A B C_ C /\ -. D e. dom F ) -> ( F ` D ) C_ C ) |
| 40 |
35 39
|
pm2.61dan |
|- ( A. x e. A B C_ C -> ( F ` D ) C_ C ) |