Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> F = ( x e. D |-> B ) ) |
2 |
1
|
fveq1d |
|- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) |
3 |
|
risset |
|- ( A e. D <-> E. x e. D x = A ) |
4 |
|
elex |
|- ( C e. V -> C e. _V ) |
5 |
|
nfa1 |
|- F/ x A. x ( x = A -> B = C ) |
6 |
|
nfv |
|- F/ x C e. _V |
7 |
|
nffvmpt1 |
|- F/_ x ( ( x e. D |-> B ) ` A ) |
8 |
7
|
nfeq1 |
|- F/ x ( ( x e. D |-> B ) ` A ) = C |
9 |
6 8
|
nfim |
|- F/ x ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) |
10 |
|
simprl |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> x e. D ) |
11 |
|
simplr |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> B = C ) |
12 |
|
simprr |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> C e. _V ) |
13 |
11 12
|
eqeltrd |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> B e. _V ) |
14 |
|
eqid |
|- ( x e. D |-> B ) = ( x e. D |-> B ) |
15 |
14
|
fvmpt2 |
|- ( ( x e. D /\ B e. _V ) -> ( ( x e. D |-> B ) ` x ) = B ) |
16 |
10 13 15
|
syl2anc |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> ( ( x e. D |-> B ) ` x ) = B ) |
17 |
|
simpll |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> x = A ) |
18 |
17
|
fveq2d |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> ( ( x e. D |-> B ) ` x ) = ( ( x e. D |-> B ) ` A ) ) |
19 |
16 18 11
|
3eqtr3d |
|- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> ( ( x e. D |-> B ) ` A ) = C ) |
20 |
19
|
exp43 |
|- ( x = A -> ( B = C -> ( x e. D -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
21 |
20
|
a2i |
|- ( ( x = A -> B = C ) -> ( x = A -> ( x e. D -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
22 |
21
|
com23 |
|- ( ( x = A -> B = C ) -> ( x e. D -> ( x = A -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
23 |
22
|
sps |
|- ( A. x ( x = A -> B = C ) -> ( x e. D -> ( x = A -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
24 |
5 9 23
|
rexlimd |
|- ( A. x ( x = A -> B = C ) -> ( E. x e. D x = A -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) |
25 |
4 24
|
syl7 |
|- ( A. x ( x = A -> B = C ) -> ( E. x e. D x = A -> ( C e. V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) |
26 |
3 25
|
syl5bi |
|- ( A. x ( x = A -> B = C ) -> ( A e. D -> ( C e. V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) |
27 |
26
|
imp32 |
|- ( ( A. x ( x = A -> B = C ) /\ ( A e. D /\ C e. V ) ) -> ( ( x e. D |-> B ) ` A ) = C ) |
28 |
27
|
3adant2 |
|- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( ( x e. D |-> B ) ` A ) = C ) |
29 |
2 28
|
eqtrd |
|- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( F ` A ) = C ) |