| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( B e. V /\ X e. B ) -> X e. B ) | 
						
							| 2 |  | simpr |  |-  ( ( G Fn B /\ ( G ` X ) =/= (/) ) -> ( G ` X ) =/= (/) ) | 
						
							| 3 | 1 2 | anim12i |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> ( X e. B /\ ( G ` X ) =/= (/) ) ) | 
						
							| 4 |  | simprl |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> G Fn B ) | 
						
							| 5 |  | simpll |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> B e. V ) | 
						
							| 6 |  | 0ex |  |-  (/) e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> (/) e. _V ) | 
						
							| 8 |  | elsuppfn |  |-  ( ( G Fn B /\ B e. V /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) | 
						
							| 10 | 3 9 | mpbird |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> X e. ( G supp (/) ) ) |