| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvn0elsupp |  |-  ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> X e. ( G supp (/) ) ) | 
						
							| 2 | 1 | exp43 |  |-  ( B e. V -> ( X e. B -> ( G Fn B -> ( ( G ` X ) =/= (/) -> X e. ( G supp (/) ) ) ) ) ) | 
						
							| 3 | 2 | 3imp |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) -> X e. ( G supp (/) ) ) ) | 
						
							| 4 |  | simp3 |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> G Fn B ) | 
						
							| 5 |  | simp1 |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> B e. V ) | 
						
							| 6 |  | 0ex |  |-  (/) e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> (/) e. _V ) | 
						
							| 8 |  | elsuppfn |  |-  ( ( G Fn B /\ B e. V /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( X e. B /\ ( G ` X ) =/= (/) ) -> ( G ` X ) =/= (/) ) | 
						
							| 11 | 9 10 | biimtrdi |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> ( X e. ( G supp (/) ) -> ( G ` X ) =/= (/) ) ) | 
						
							| 12 | 3 11 | impbid |  |-  ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) <-> X e. ( G supp (/) ) ) ) |