Step |
Hyp |
Ref |
Expression |
1 |
|
fvfundmfvn0 |
|- ( ( F ` X ) =/= (/) -> ( X e. dom F /\ Fun ( F |` { X } ) ) ) |
2 |
|
eldmressnsn |
|- ( X e. dom F -> X e. dom ( F |` { X } ) ) |
3 |
|
fvelrn |
|- ( ( Fun ( F |` { X } ) /\ X e. dom ( F |` { X } ) ) -> ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) ) |
4 |
|
pm3.2 |
|- ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) |
5 |
3 4
|
syl |
|- ( ( Fun ( F |` { X } ) /\ X e. dom ( F |` { X } ) ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) |
6 |
5
|
ex |
|- ( Fun ( F |` { X } ) -> ( X e. dom ( F |` { X } ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) ) |
7 |
6
|
com13 |
|- ( X e. dom F -> ( X e. dom ( F |` { X } ) -> ( Fun ( F |` { X } ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) ) |
8 |
2 7
|
mpd |
|- ( X e. dom F -> ( Fun ( F |` { X } ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) |
9 |
8
|
imp |
|- ( ( X e. dom F /\ Fun ( F |` { X } ) ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) |
10 |
|
fvressn |
|- ( X e. dom F -> ( ( F |` { X } ) ` X ) = ( F ` X ) ) |
11 |
10
|
eleq1d |
|- ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) <-> ( F ` X ) e. ran ( F |` { X } ) ) ) |
12 |
|
fvrnressn |
|- ( X e. dom F -> ( ( F ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) ) |
13 |
11 12
|
sylbid |
|- ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) ) |
14 |
13
|
impcom |
|- ( ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) -> ( F ` X ) e. ran F ) |
15 |
1 9 14
|
3syl |
|- ( ( F ` X ) =/= (/) -> ( F ` X ) e. ran F ) |