Step |
Hyp |
Ref |
Expression |
1 |
|
fvopab3g.2 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
fvopab3g.3 |
|- ( y = B -> ( ps <-> ch ) ) |
3 |
|
fvopab3g.4 |
|- ( x e. C -> E! y ph ) |
4 |
|
fvopab3g.5 |
|- F = { <. x , y >. | ( x e. C /\ ph ) } |
5 |
|
eleq1 |
|- ( x = A -> ( x e. C <-> A e. C ) ) |
6 |
5 1
|
anbi12d |
|- ( x = A -> ( ( x e. C /\ ph ) <-> ( A e. C /\ ps ) ) ) |
7 |
2
|
anbi2d |
|- ( y = B -> ( ( A e. C /\ ps ) <-> ( A e. C /\ ch ) ) ) |
8 |
6 7
|
opelopabg |
|- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } <-> ( A e. C /\ ch ) ) ) |
9 |
3 4
|
fnopab |
|- F Fn C |
10 |
|
fnopfvb |
|- ( ( F Fn C /\ A e. C ) -> ( ( F ` A ) = B <-> <. A , B >. e. F ) ) |
11 |
9 10
|
mpan |
|- ( A e. C -> ( ( F ` A ) = B <-> <. A , B >. e. F ) ) |
12 |
4
|
eleq2i |
|- ( <. A , B >. e. F <-> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) |
13 |
11 12
|
bitrdi |
|- ( A e. C -> ( ( F ` A ) = B <-> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) |
14 |
13
|
adantr |
|- ( ( A e. C /\ B e. D ) -> ( ( F ` A ) = B <-> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) |
15 |
|
ibar |
|- ( A e. C -> ( ch <-> ( A e. C /\ ch ) ) ) |
16 |
15
|
adantr |
|- ( ( A e. C /\ B e. D ) -> ( ch <-> ( A e. C /\ ch ) ) ) |
17 |
8 14 16
|
3bitr4d |
|- ( ( A e. C /\ B e. D ) -> ( ( F ` A ) = B <-> ch ) ) |