Metamath Proof Explorer


Theorem fvopab4ndm

Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008)

Ref Expression
Hypothesis fvopab4ndm.1
|- F = { <. x , y >. | ( x e. A /\ ph ) }
Assertion fvopab4ndm
|- ( -. B e. A -> ( F ` B ) = (/) )

Proof

Step Hyp Ref Expression
1 fvopab4ndm.1
 |-  F = { <. x , y >. | ( x e. A /\ ph ) }
2 1 dmeqi
 |-  dom F = dom { <. x , y >. | ( x e. A /\ ph ) }
3 dmopabss
 |-  dom { <. x , y >. | ( x e. A /\ ph ) } C_ A
4 2 3 eqsstri
 |-  dom F C_ A
5 4 sseli
 |-  ( B e. dom F -> B e. A )
6 ndmfv
 |-  ( -. B e. dom F -> ( F ` B ) = (/) )
7 5 6 nsyl5
 |-  ( -. B e. A -> ( F ` B ) = (/) )