| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvopab5.1 |  |-  F = { <. x , y >. | ph } | 
						
							| 2 |  | fvopab5.2 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 3 |  | elex |  |-  ( A e. V -> A e. _V ) | 
						
							| 4 |  | df-fv |  |-  ( F ` A ) = ( iota z A F z ) | 
						
							| 5 |  | breq2 |  |-  ( z = y -> ( A F z <-> A F y ) ) | 
						
							| 6 |  | nfcv |  |-  F/_ y A | 
						
							| 7 |  | nfopab2 |  |-  F/_ y { <. x , y >. | ph } | 
						
							| 8 | 1 7 | nfcxfr |  |-  F/_ y F | 
						
							| 9 |  | nfcv |  |-  F/_ y z | 
						
							| 10 | 6 8 9 | nfbr |  |-  F/ y A F z | 
						
							| 11 |  | nfv |  |-  F/ z A F y | 
						
							| 12 | 5 10 11 | cbviotaw |  |-  ( iota z A F z ) = ( iota y A F y ) | 
						
							| 13 | 4 12 | eqtri |  |-  ( F ` A ) = ( iota y A F y ) | 
						
							| 14 |  | nfcv |  |-  F/_ x A | 
						
							| 15 |  | nfopab1 |  |-  F/_ x { <. x , y >. | ph } | 
						
							| 16 | 1 15 | nfcxfr |  |-  F/_ x F | 
						
							| 17 |  | nfcv |  |-  F/_ x y | 
						
							| 18 | 14 16 17 | nfbr |  |-  F/ x A F y | 
						
							| 19 |  | nfv |  |-  F/ x ps | 
						
							| 20 | 18 19 | nfbi |  |-  F/ x ( A F y <-> ps ) | 
						
							| 21 |  | breq1 |  |-  ( x = A -> ( x F y <-> A F y ) ) | 
						
							| 22 | 21 2 | bibi12d |  |-  ( x = A -> ( ( x F y <-> ph ) <-> ( A F y <-> ps ) ) ) | 
						
							| 23 |  | df-br |  |-  ( x F y <-> <. x , y >. e. F ) | 
						
							| 24 | 1 | eleq2i |  |-  ( <. x , y >. e. F <-> <. x , y >. e. { <. x , y >. | ph } ) | 
						
							| 25 |  | opabidw |  |-  ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) | 
						
							| 26 | 23 24 25 | 3bitri |  |-  ( x F y <-> ph ) | 
						
							| 27 | 20 22 26 | vtoclg1f |  |-  ( A e. _V -> ( A F y <-> ps ) ) | 
						
							| 28 | 27 | iotabidv |  |-  ( A e. _V -> ( iota y A F y ) = ( iota y ps ) ) | 
						
							| 29 | 13 28 | eqtrid |  |-  ( A e. _V -> ( F ` A ) = ( iota y ps ) ) | 
						
							| 30 | 3 29 | syl |  |-  ( A e. V -> ( F ` A ) = ( iota y ps ) ) |