Step |
Hyp |
Ref |
Expression |
1 |
|
fvopab5.1 |
|- F = { <. x , y >. | ph } |
2 |
|
fvopab5.2 |
|- ( x = A -> ( ph <-> ps ) ) |
3 |
|
elex |
|- ( A e. V -> A e. _V ) |
4 |
|
df-fv |
|- ( F ` A ) = ( iota z A F z ) |
5 |
|
breq2 |
|- ( z = y -> ( A F z <-> A F y ) ) |
6 |
|
nfcv |
|- F/_ y A |
7 |
|
nfopab2 |
|- F/_ y { <. x , y >. | ph } |
8 |
1 7
|
nfcxfr |
|- F/_ y F |
9 |
|
nfcv |
|- F/_ y z |
10 |
6 8 9
|
nfbr |
|- F/ y A F z |
11 |
|
nfv |
|- F/ z A F y |
12 |
5 10 11
|
cbviotaw |
|- ( iota z A F z ) = ( iota y A F y ) |
13 |
4 12
|
eqtri |
|- ( F ` A ) = ( iota y A F y ) |
14 |
|
nfcv |
|- F/_ x A |
15 |
|
nfopab1 |
|- F/_ x { <. x , y >. | ph } |
16 |
1 15
|
nfcxfr |
|- F/_ x F |
17 |
|
nfcv |
|- F/_ x y |
18 |
14 16 17
|
nfbr |
|- F/ x A F y |
19 |
|
nfv |
|- F/ x ps |
20 |
18 19
|
nfbi |
|- F/ x ( A F y <-> ps ) |
21 |
|
breq1 |
|- ( x = A -> ( x F y <-> A F y ) ) |
22 |
21 2
|
bibi12d |
|- ( x = A -> ( ( x F y <-> ph ) <-> ( A F y <-> ps ) ) ) |
23 |
|
df-br |
|- ( x F y <-> <. x , y >. e. F ) |
24 |
1
|
eleq2i |
|- ( <. x , y >. e. F <-> <. x , y >. e. { <. x , y >. | ph } ) |
25 |
|
opabidw |
|- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
26 |
23 24 25
|
3bitri |
|- ( x F y <-> ph ) |
27 |
20 22 26
|
vtoclg1f |
|- ( A e. _V -> ( A F y <-> ps ) ) |
28 |
27
|
iotabidv |
|- ( A e. _V -> ( iota y A F y ) = ( iota y ps ) ) |
29 |
13 28
|
eqtrid |
|- ( A e. _V -> ( F ` A ) = ( iota y ps ) ) |
30 |
3 29
|
syl |
|- ( A e. V -> ( F ` A ) = ( iota y ps ) ) |