| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvopab6.1 |  |-  F = { <. x , y >. | ( ph /\ y = B ) } | 
						
							| 2 |  | fvopab6.2 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 3 |  | fvopab6.3 |  |-  ( x = A -> B = C ) | 
						
							| 4 |  | elex |  |-  ( A e. D -> A e. _V ) | 
						
							| 5 | 3 | eqeq2d |  |-  ( x = A -> ( y = B <-> y = C ) ) | 
						
							| 6 | 2 5 | anbi12d |  |-  ( x = A -> ( ( ph /\ y = B ) <-> ( ps /\ y = C ) ) ) | 
						
							| 7 |  | iba |  |-  ( y = C -> ( ps <-> ( ps /\ y = C ) ) ) | 
						
							| 8 | 7 | bicomd |  |-  ( y = C -> ( ( ps /\ y = C ) <-> ps ) ) | 
						
							| 9 |  | moeq |  |-  E* y y = B | 
						
							| 10 | 9 | moani |  |-  E* y ( ph /\ y = B ) | 
						
							| 11 | 10 | a1i |  |-  ( x e. _V -> E* y ( ph /\ y = B ) ) | 
						
							| 12 |  | vex |  |-  x e. _V | 
						
							| 13 | 12 | biantrur |  |-  ( ( ph /\ y = B ) <-> ( x e. _V /\ ( ph /\ y = B ) ) ) | 
						
							| 14 | 13 | opabbii |  |-  { <. x , y >. | ( ph /\ y = B ) } = { <. x , y >. | ( x e. _V /\ ( ph /\ y = B ) ) } | 
						
							| 15 | 1 14 | eqtri |  |-  F = { <. x , y >. | ( x e. _V /\ ( ph /\ y = B ) ) } | 
						
							| 16 | 6 8 11 15 | fvopab3ig |  |-  ( ( A e. _V /\ C e. R ) -> ( ps -> ( F ` A ) = C ) ) | 
						
							| 17 | 4 16 | sylan |  |-  ( ( A e. D /\ C e. R ) -> ( ps -> ( F ` A ) = C ) ) | 
						
							| 18 | 17 | 3impia |  |-  ( ( A e. D /\ C e. R /\ ps ) -> ( F ` A ) = C ) |