Step |
Hyp |
Ref |
Expression |
1 |
|
fvopab6.1 |
|- F = { <. x , y >. | ( ph /\ y = B ) } |
2 |
|
fvopab6.2 |
|- ( x = A -> ( ph <-> ps ) ) |
3 |
|
fvopab6.3 |
|- ( x = A -> B = C ) |
4 |
|
elex |
|- ( A e. D -> A e. _V ) |
5 |
3
|
eqeq2d |
|- ( x = A -> ( y = B <-> y = C ) ) |
6 |
2 5
|
anbi12d |
|- ( x = A -> ( ( ph /\ y = B ) <-> ( ps /\ y = C ) ) ) |
7 |
|
iba |
|- ( y = C -> ( ps <-> ( ps /\ y = C ) ) ) |
8 |
7
|
bicomd |
|- ( y = C -> ( ( ps /\ y = C ) <-> ps ) ) |
9 |
|
moeq |
|- E* y y = B |
10 |
9
|
moani |
|- E* y ( ph /\ y = B ) |
11 |
10
|
a1i |
|- ( x e. _V -> E* y ( ph /\ y = B ) ) |
12 |
|
vex |
|- x e. _V |
13 |
12
|
biantrur |
|- ( ( ph /\ y = B ) <-> ( x e. _V /\ ( ph /\ y = B ) ) ) |
14 |
13
|
opabbii |
|- { <. x , y >. | ( ph /\ y = B ) } = { <. x , y >. | ( x e. _V /\ ( ph /\ y = B ) ) } |
15 |
1 14
|
eqtri |
|- F = { <. x , y >. | ( x e. _V /\ ( ph /\ y = B ) ) } |
16 |
6 8 11 15
|
fvopab3ig |
|- ( ( A e. _V /\ C e. R ) -> ( ps -> ( F ` A ) = C ) ) |
17 |
4 16
|
sylan |
|- ( ( A e. D /\ C e. R ) -> ( ps -> ( F ` A ) = C ) ) |
18 |
17
|
3impia |
|- ( ( A e. D /\ C e. R /\ ps ) -> ( F ` A ) = C ) |