Step |
Hyp |
Ref |
Expression |
1 |
|
fvovco.1 |
|- ( ph -> F : X --> ( V X. W ) ) |
2 |
|
fvovco.2 |
|- ( ph -> Y e. X ) |
3 |
1 2
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. ( V X. W ) ) |
4 |
|
1st2nd2 |
|- ( ( F ` Y ) e. ( V X. W ) -> ( F ` Y ) = <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) |
5 |
3 4
|
syl |
|- ( ph -> ( F ` Y ) = <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) |
6 |
5
|
fveq2d |
|- ( ph -> ( O ` ( F ` Y ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) ) |
7 |
|
fvco3 |
|- ( ( F : X --> ( V X. W ) /\ Y e. X ) -> ( ( O o. F ) ` Y ) = ( O ` ( F ` Y ) ) ) |
8 |
1 2 7
|
syl2anc |
|- ( ph -> ( ( O o. F ) ` Y ) = ( O ` ( F ` Y ) ) ) |
9 |
|
df-ov |
|- ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) |
10 |
9
|
a1i |
|- ( ph -> ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) ) |
11 |
6 8 10
|
3eqtr4d |
|- ( ph -> ( ( O o. F ) ` Y ) = ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) ) |