| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvovco.1 | 
							 |-  ( ph -> F : X --> ( V X. W ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fvovco.2 | 
							 |-  ( ph -> Y e. X )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( F ` Y ) e. ( V X. W ) )  | 
						
						
							| 4 | 
							
								
							 | 
							1st2nd2 | 
							 |-  ( ( F ` Y ) e. ( V X. W ) -> ( F ` Y ) = <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							 |-  ( ph -> ( F ` Y ) = <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( ph -> ( O ` ( F ` Y ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( F : X --> ( V X. W ) /\ Y e. X ) -> ( ( O o. F ) ` Y ) = ( O ` ( F ` Y ) ) )  | 
						
						
							| 8 | 
							
								1 2 7
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( O o. F ) ` Y ) = ( O ` ( F ` Y ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ov | 
							 |-  ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( ph -> ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) )  | 
						
						
							| 11 | 
							
								6 8 10
							 | 
							3eqtr4d | 
							 |-  ( ph -> ( ( O o. F ) ` Y ) = ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) )  |