Metamath Proof Explorer


Theorem fvoveq1d

Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022)

Ref Expression
Hypothesis fvoveq1d.1
|- ( ph -> A = B )
Assertion fvoveq1d
|- ( ph -> ( F ` ( A O C ) ) = ( F ` ( B O C ) ) )

Proof

Step Hyp Ref Expression
1 fvoveq1d.1
 |-  ( ph -> A = B )
2 1 oveq1d
 |-  ( ph -> ( A O C ) = ( B O C ) )
3 2 fveq2d
 |-  ( ph -> ( F ` ( A O C ) ) = ( F ` ( B O C ) ) )