Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses fvpr1.1
|- A e. _V
fvpr1.2
|- C e. _V
Assertion fvpr1
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvpr1.1
 |-  A e. _V
2 fvpr1.2
 |-  C e. _V
3 df-pr
 |-  { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } )
4 3 fveq1i
 |-  ( { <. A , C >. , <. B , D >. } ` A ) = ( ( { <. A , C >. } u. { <. B , D >. } ) ` A )
5 necom
 |-  ( A =/= B <-> B =/= A )
6 fvunsn
 |-  ( B =/= A -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) )
7 5 6 sylbi
 |-  ( A =/= B -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) )
8 4 7 syl5eq
 |-  ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = ( { <. A , C >. } ` A ) )
9 1 2 fvsn
 |-  ( { <. A , C >. } ` A ) = C
10 8 9 eqtrdi
 |-  ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = C )