Step |
Hyp |
Ref |
Expression |
1 |
|
fvpr1.1 |
|- A e. _V |
2 |
|
fvpr1.2 |
|- C e. _V |
3 |
|
df-pr |
|- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
4 |
3
|
fveq1i |
|- ( { <. A , C >. , <. B , D >. } ` A ) = ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) |
5 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
6 |
|
fvunsn |
|- ( B =/= A -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) ) |
7 |
5 6
|
sylbi |
|- ( A =/= B -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) ) |
8 |
4 7
|
eqtrid |
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = ( { <. A , C >. } ` A ) ) |
9 |
1 2
|
fvsn |
|- ( { <. A , C >. } ` A ) = C |
10 |
8 9
|
eqtrdi |
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = C ) |