Metamath Proof Explorer


Theorem fvpr2g

Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017)

Ref Expression
Assertion fvpr2g
|- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = D )

Proof

Step Hyp Ref Expression
1 prcom
 |-  { <. A , C >. , <. B , D >. } = { <. B , D >. , <. A , C >. }
2 df-pr
 |-  { <. B , D >. , <. A , C >. } = ( { <. B , D >. } u. { <. A , C >. } )
3 1 2 eqtri
 |-  { <. A , C >. , <. B , D >. } = ( { <. B , D >. } u. { <. A , C >. } )
4 3 fveq1i
 |-  ( { <. A , C >. , <. B , D >. } ` B ) = ( ( { <. B , D >. } u. { <. A , C >. } ) ` B )
5 fvunsn
 |-  ( A =/= B -> ( ( { <. B , D >. } u. { <. A , C >. } ) ` B ) = ( { <. B , D >. } ` B ) )
6 4 5 syl5eq
 |-  ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` B ) = ( { <. B , D >. } ` B ) )
7 6 3ad2ant3
 |-  ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = ( { <. B , D >. } ` B ) )
8 fvsng
 |-  ( ( B e. V /\ D e. W ) -> ( { <. B , D >. } ` B ) = D )
9 8 3adant3
 |-  ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. B , D >. } ` B ) = D )
10 7 9 eqtrd
 |-  ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = D )