Metamath Proof Explorer


Theorem fvprcALT

Description: Alternate proof of fvprc using ax-pow instead of ax-sep and ax-pr . (Contributed by NM, 20-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fvprcALT
|- ( -. A e. _V -> ( F ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 brprcneu
 |-  ( -. A e. _V -> -. E! x A F x )
2 tz6.12-2
 |-  ( -. E! x A F x -> ( F ` A ) = (/) )
3 1 2 syl
 |-  ( -. A e. _V -> ( F ` A ) = (/) )