| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvpr0o |  |-  ( A e. V -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) | 
						
							| 4 |  | simpr |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> C = (/) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ) | 
						
							| 6 | 4 | iftrued |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> if ( C = (/) , A , B ) = A ) | 
						
							| 7 | 3 5 6 | 3eqtr4d |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) | 
						
							| 8 |  | fvpr1o |  |-  ( B e. W -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) | 
						
							| 11 |  | simpr |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> C = 1o ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ) | 
						
							| 13 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 14 | 13 | neii |  |-  -. 1o = (/) | 
						
							| 15 | 11 | eqeq1d |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( C = (/) <-> 1o = (/) ) ) | 
						
							| 16 | 14 15 | mtbiri |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> -. C = (/) ) | 
						
							| 17 | 16 | iffalsed |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> if ( C = (/) , A , B ) = B ) | 
						
							| 18 | 10 12 17 | 3eqtr4d |  |-  ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) | 
						
							| 19 |  | elpri |  |-  ( C e. { (/) , 1o } -> ( C = (/) \/ C = 1o ) ) | 
						
							| 20 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 21 | 19 20 | eleq2s |  |-  ( C e. 2o -> ( C = (/) \/ C = 1o ) ) | 
						
							| 22 | 21 | 3ad2ant3 |  |-  ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( C = (/) \/ C = 1o ) ) | 
						
							| 23 | 7 18 22 | mpjaodan |  |-  ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) |