| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvprmselelfz.f |
|- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
| 2 |
|
eleq1 |
|- ( m = X -> ( m e. Prime <-> X e. Prime ) ) |
| 3 |
|
id |
|- ( m = X -> m = X ) |
| 4 |
2 3
|
ifbieq1d |
|- ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) |
| 5 |
|
iftrue |
|- ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) |
| 6 |
5
|
adantr |
|- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> if ( X e. Prime , X , 1 ) = X ) |
| 7 |
4 6
|
sylan9eqr |
|- ( ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
| 8 |
|
elfznn |
|- ( X e. ( 1 ... N ) -> X e. NN ) |
| 9 |
8
|
adantl |
|- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> X e. NN ) |
| 10 |
9
|
adantl |
|- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. NN ) |
| 11 |
1 7 10 10
|
fvmptd2 |
|- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) = X ) |
| 12 |
|
simprr |
|- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. ( 1 ... N ) ) |
| 13 |
11 12
|
eqeltrd |
|- ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) e. ( 1 ... N ) ) |
| 14 |
|
iffalse |
|- ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) |
| 15 |
14
|
adantr |
|- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
| 16 |
4 15
|
sylan9eqr |
|- ( ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 17 |
9
|
adantl |
|- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. NN ) |
| 18 |
|
1nn |
|- 1 e. NN |
| 19 |
18
|
a1i |
|- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> 1 e. NN ) |
| 20 |
1 16 17 19
|
fvmptd2 |
|- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) = 1 ) |
| 21 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
| 22 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
| 23 |
21 22
|
sylbi |
|- ( N e. NN -> 1 e. ( 1 ... N ) ) |
| 24 |
23
|
adantr |
|- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) |
| 25 |
24
|
adantl |
|- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> 1 e. ( 1 ... N ) ) |
| 26 |
20 25
|
eqeltrd |
|- ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) e. ( 1 ... N ) ) |
| 27 |
13 26
|
pm2.61ian |
|- ( ( N e. NN /\ X e. ( 1 ... N ) ) -> ( F ` X ) e. ( 1 ... N ) ) |