| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvprmselelfz.f |
|- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
| 2 |
|
eleq1 |
|- ( m = X -> ( m e. Prime <-> X e. Prime ) ) |
| 3 |
|
id |
|- ( m = X -> m = X ) |
| 4 |
2 3
|
ifbieq1d |
|- ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) |
| 5 |
|
iftrue |
|- ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) |
| 6 |
5
|
ad2antrr |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) |
| 7 |
4 6
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
| 8 |
|
elfznn |
|- ( X e. ( 1 ... N ) -> X e. NN ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> X e. NN ) |
| 10 |
9
|
adantl |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 11 |
1 7 10 10
|
fvmptd2 |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) |
| 12 |
|
eleq1 |
|- ( m = Y -> ( m e. Prime <-> Y e. Prime ) ) |
| 13 |
|
id |
|- ( m = Y -> m = Y ) |
| 14 |
12 13
|
ifbieq1d |
|- ( m = Y -> if ( m e. Prime , m , 1 ) = if ( Y e. Prime , Y , 1 ) ) |
| 15 |
|
iftrue |
|- ( Y e. Prime -> if ( Y e. Prime , Y , 1 ) = Y ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) |
| 17 |
14 16
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) |
| 18 |
|
elfznn |
|- ( Y e. ( 1 ... N ) -> Y e. NN ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> Y e. NN ) |
| 20 |
19
|
adantl |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 21 |
1 17 20 20
|
fvmptd2 |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) |
| 22 |
11 21
|
oveq12d |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd Y ) ) |
| 23 |
|
prmrp |
|- ( ( X e. Prime /\ Y e. Prime ) -> ( ( X gcd Y ) = 1 <-> X =/= Y ) ) |
| 24 |
23
|
biimprcd |
|- ( X =/= Y -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) |
| 25 |
24
|
3ad2ant3 |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) |
| 26 |
25
|
impcom |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd Y ) = 1 ) |
| 27 |
22 26
|
eqtrd |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 28 |
27
|
ex |
|- ( ( X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 29 |
5
|
ad2antrr |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) |
| 30 |
4 29
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
| 31 |
9
|
adantl |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 32 |
1 30 31 31
|
fvmptd2 |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) |
| 33 |
|
iffalse |
|- ( -. Y e. Prime -> if ( Y e. Prime , Y , 1 ) = 1 ) |
| 34 |
33
|
ad2antlr |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) |
| 35 |
14 34
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 36 |
19
|
adantl |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 37 |
|
1nn |
|- 1 e. NN |
| 38 |
37
|
a1i |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
| 39 |
1 35 36 38
|
fvmptd2 |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) |
| 40 |
32 39
|
oveq12d |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd 1 ) ) |
| 41 |
|
prmz |
|- ( X e. Prime -> X e. ZZ ) |
| 42 |
|
gcd1 |
|- ( X e. ZZ -> ( X gcd 1 ) = 1 ) |
| 43 |
41 42
|
syl |
|- ( X e. Prime -> ( X gcd 1 ) = 1 ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd 1 ) = 1 ) |
| 45 |
40 44
|
eqtrd |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 46 |
45
|
ex |
|- ( ( X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 47 |
|
iffalse |
|- ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
| 49 |
4 48
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 50 |
9
|
adantl |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 51 |
37
|
a1i |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
| 52 |
1 49 50 51
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) |
| 53 |
15
|
ad2antlr |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) |
| 54 |
14 53
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) |
| 55 |
19
|
adantl |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 56 |
1 54 55 55
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) |
| 57 |
52 56
|
oveq12d |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd Y ) ) |
| 58 |
|
prmz |
|- ( Y e. Prime -> Y e. ZZ ) |
| 59 |
|
1gcd |
|- ( Y e. ZZ -> ( 1 gcd Y ) = 1 ) |
| 60 |
58 59
|
syl |
|- ( Y e. Prime -> ( 1 gcd Y ) = 1 ) |
| 61 |
60
|
ad2antlr |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd Y ) = 1 ) |
| 62 |
57 61
|
eqtrd |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 63 |
62
|
ex |
|- ( ( -. X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 64 |
47
|
ad2antrr |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
| 65 |
4 64
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 66 |
9
|
adantl |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 67 |
37
|
a1i |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
| 68 |
1 65 66 67
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) |
| 69 |
33
|
ad2antlr |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) |
| 70 |
14 69
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 71 |
19
|
adantl |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 72 |
1 70 71 67
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) |
| 73 |
68 72
|
oveq12d |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd 1 ) ) |
| 74 |
|
1z |
|- 1 e. ZZ |
| 75 |
|
1gcd |
|- ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) |
| 76 |
74 75
|
mp1i |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd 1 ) = 1 ) |
| 77 |
73 76
|
eqtrd |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 78 |
77
|
ex |
|- ( ( -. X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 79 |
28 46 63 78
|
4cases |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |