Step |
Hyp |
Ref |
Expression |
1 |
|
fvprmselelfz.f |
|- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
2 |
|
eleq1 |
|- ( m = X -> ( m e. Prime <-> X e. Prime ) ) |
3 |
|
id |
|- ( m = X -> m = X ) |
4 |
2 3
|
ifbieq1d |
|- ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) |
5 |
|
iftrue |
|- ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) |
6 |
5
|
ad2antrr |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) |
7 |
4 6
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
8 |
|
elfznn |
|- ( X e. ( 1 ... N ) -> X e. NN ) |
9 |
8
|
3ad2ant1 |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> X e. NN ) |
10 |
9
|
adantl |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
11 |
1 7 10 10
|
fvmptd2 |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) |
12 |
|
eleq1 |
|- ( m = Y -> ( m e. Prime <-> Y e. Prime ) ) |
13 |
|
id |
|- ( m = Y -> m = Y ) |
14 |
12 13
|
ifbieq1d |
|- ( m = Y -> if ( m e. Prime , m , 1 ) = if ( Y e. Prime , Y , 1 ) ) |
15 |
|
iftrue |
|- ( Y e. Prime -> if ( Y e. Prime , Y , 1 ) = Y ) |
16 |
15
|
ad2antlr |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) |
17 |
14 16
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) |
18 |
|
elfznn |
|- ( Y e. ( 1 ... N ) -> Y e. NN ) |
19 |
18
|
3ad2ant2 |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> Y e. NN ) |
20 |
19
|
adantl |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
21 |
1 17 20 20
|
fvmptd2 |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) |
22 |
11 21
|
oveq12d |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd Y ) ) |
23 |
|
prmrp |
|- ( ( X e. Prime /\ Y e. Prime ) -> ( ( X gcd Y ) = 1 <-> X =/= Y ) ) |
24 |
23
|
biimprcd |
|- ( X =/= Y -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) |
25 |
24
|
3ad2ant3 |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) |
26 |
25
|
impcom |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd Y ) = 1 ) |
27 |
22 26
|
eqtrd |
|- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
28 |
27
|
ex |
|- ( ( X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
29 |
5
|
ad2antrr |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) |
30 |
4 29
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
31 |
9
|
adantl |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
32 |
1 30 31 31
|
fvmptd2 |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) |
33 |
|
iffalse |
|- ( -. Y e. Prime -> if ( Y e. Prime , Y , 1 ) = 1 ) |
34 |
33
|
ad2antlr |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) |
35 |
14 34
|
sylan9eqr |
|- ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) |
36 |
19
|
adantl |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
37 |
|
1nn |
|- 1 e. NN |
38 |
37
|
a1i |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
39 |
1 35 36 38
|
fvmptd2 |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) |
40 |
32 39
|
oveq12d |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd 1 ) ) |
41 |
|
prmz |
|- ( X e. Prime -> X e. ZZ ) |
42 |
|
gcd1 |
|- ( X e. ZZ -> ( X gcd 1 ) = 1 ) |
43 |
41 42
|
syl |
|- ( X e. Prime -> ( X gcd 1 ) = 1 ) |
44 |
43
|
ad2antrr |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd 1 ) = 1 ) |
45 |
40 44
|
eqtrd |
|- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
46 |
45
|
ex |
|- ( ( X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
47 |
|
iffalse |
|- ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) |
48 |
47
|
ad2antrr |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
49 |
4 48
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
50 |
9
|
adantl |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
51 |
37
|
a1i |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
52 |
1 49 50 51
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) |
53 |
15
|
ad2antlr |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) |
54 |
14 53
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) |
55 |
19
|
adantl |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
56 |
1 54 55 55
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) |
57 |
52 56
|
oveq12d |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd Y ) ) |
58 |
|
prmz |
|- ( Y e. Prime -> Y e. ZZ ) |
59 |
|
1gcd |
|- ( Y e. ZZ -> ( 1 gcd Y ) = 1 ) |
60 |
58 59
|
syl |
|- ( Y e. Prime -> ( 1 gcd Y ) = 1 ) |
61 |
60
|
ad2antlr |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd Y ) = 1 ) |
62 |
57 61
|
eqtrd |
|- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
63 |
62
|
ex |
|- ( ( -. X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
64 |
47
|
ad2antrr |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
65 |
4 64
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
66 |
9
|
adantl |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
67 |
37
|
a1i |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
68 |
1 65 66 67
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) |
69 |
33
|
ad2antlr |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) |
70 |
14 69
|
sylan9eqr |
|- ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) |
71 |
19
|
adantl |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
72 |
1 70 71 67
|
fvmptd2 |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) |
73 |
68 72
|
oveq12d |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd 1 ) ) |
74 |
|
1z |
|- 1 e. ZZ |
75 |
|
1gcd |
|- ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) |
76 |
74 75
|
mp1i |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd 1 ) = 1 ) |
77 |
73 76
|
eqtrd |
|- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
78 |
77
|
ex |
|- ( ( -. X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
79 |
28 46 63 78
|
4cases |
|- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |