Step |
Hyp |
Ref |
Expression |
1 |
|
fvproj.h |
|- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
2 |
|
fvproj.x |
|- ( ph -> X e. A ) |
3 |
|
fvproj.y |
|- ( ph -> Y e. B ) |
4 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
5 |
|
fveq2 |
|- ( a = X -> ( F ` a ) = ( F ` X ) ) |
6 |
5
|
opeq1d |
|- ( a = X -> <. ( F ` a ) , ( G ` b ) >. = <. ( F ` X ) , ( G ` b ) >. ) |
7 |
|
fveq2 |
|- ( b = Y -> ( G ` b ) = ( G ` Y ) ) |
8 |
7
|
opeq2d |
|- ( b = Y -> <. ( F ` X ) , ( G ` b ) >. = <. ( F ` X ) , ( G ` Y ) >. ) |
9 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
10 |
9
|
opeq1d |
|- ( x = a -> <. ( F ` x ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` y ) >. ) |
11 |
|
fveq2 |
|- ( y = b -> ( G ` y ) = ( G ` b ) ) |
12 |
11
|
opeq2d |
|- ( y = b -> <. ( F ` a ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` b ) >. ) |
13 |
10 12
|
cbvmpov |
|- ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) = ( a e. A , b e. B |-> <. ( F ` a ) , ( G ` b ) >. ) |
14 |
1 13
|
eqtri |
|- H = ( a e. A , b e. B |-> <. ( F ` a ) , ( G ` b ) >. ) |
15 |
|
opex |
|- <. ( F ` X ) , ( G ` Y ) >. e. _V |
16 |
6 8 14 15
|
ovmpo |
|- ( ( X e. A /\ Y e. B ) -> ( X H Y ) = <. ( F ` X ) , ( G ` Y ) >. ) |
17 |
2 3 16
|
syl2anc |
|- ( ph -> ( X H Y ) = <. ( F ` X ) , ( G ` Y ) >. ) |
18 |
4 17
|
eqtr3id |
|- ( ph -> ( H ` <. X , Y >. ) = <. ( F ` X ) , ( G ` Y ) >. ) |