Metamath Proof Explorer


Theorem fvres

Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994)

Ref Expression
Assertion fvres
|- ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 brresi
 |-  ( A ( F |` B ) x <-> ( A e. B /\ A F x ) )
3 2 baib
 |-  ( A e. B -> ( A ( F |` B ) x <-> A F x ) )
4 3 iotabidv
 |-  ( A e. B -> ( iota x A ( F |` B ) x ) = ( iota x A F x ) )
5 df-fv
 |-  ( ( F |` B ) ` A ) = ( iota x A ( F |` B ) x )
6 df-fv
 |-  ( F ` A ) = ( iota x A F x )
7 4 5 6 3eqtr4g
 |-  ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) )