| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnssres |
|- ( ( F Fn A /\ B C_ A ) -> ( F |` B ) Fn B ) |
| 2 |
|
fnssres |
|- ( ( G Fn C /\ B C_ C ) -> ( G |` B ) Fn B ) |
| 3 |
|
eqfnfv |
|- ( ( ( F |` B ) Fn B /\ ( G |` B ) Fn B ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) ) ) |
| 4 |
|
fvres |
|- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 5 |
|
fvres |
|- ( x e. B -> ( ( G |` B ) ` x ) = ( G ` x ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( x e. B -> ( ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 7 |
6
|
ralbiia |
|- ( A. x e. B ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) |
| 8 |
3 7
|
bitrdi |
|- ( ( ( F |` B ) Fn B /\ ( G |` B ) Fn B ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |
| 9 |
1 2 8
|
syl2an |
|- ( ( ( F Fn A /\ B C_ A ) /\ ( G Fn C /\ B C_ C ) ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |
| 10 |
9
|
an4s |
|- ( ( ( F Fn A /\ G Fn C ) /\ ( B C_ A /\ B C_ C ) ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |