| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvresex.1 |  |-  A e. _V | 
						
							| 2 |  | ssv |  |-  A C_ _V | 
						
							| 3 |  | resmpt |  |-  ( A C_ _V -> ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) | 
						
							| 5 | 4 | fveq1i |  |-  ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( z e. A |-> ( F ` z ) ) ` x ) | 
						
							| 6 |  | fveq2 |  |-  ( z = x -> ( F ` z ) = ( F ` x ) ) | 
						
							| 7 |  | eqid |  |-  ( z e. _V |-> ( F ` z ) ) = ( z e. _V |-> ( F ` z ) ) | 
						
							| 8 |  | fvex |  |-  ( F ` x ) e. _V | 
						
							| 9 | 6 7 8 | fvmpt |  |-  ( x e. _V -> ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) ) | 
						
							| 10 | 9 | elv |  |-  ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) | 
						
							| 11 |  | fveqres |  |-  ( ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) -> ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) | 
						
							| 13 | 5 12 | eqtr3i |  |-  ( ( z e. A |-> ( F ` z ) ) ` x ) = ( ( F |` A ) ` x ) | 
						
							| 14 | 13 | eqeq2i |  |-  ( y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> y = ( ( F |` A ) ` x ) ) | 
						
							| 15 | 14 | exbii |  |-  ( E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> E. x y = ( ( F |` A ) ` x ) ) | 
						
							| 16 | 15 | abbii |  |-  { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } = { y | E. x y = ( ( F |` A ) ` x ) } | 
						
							| 17 | 1 | mptex |  |-  ( z e. A |-> ( F ` z ) ) e. _V | 
						
							| 18 | 17 | fvclex |  |-  { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } e. _V | 
						
							| 19 | 16 18 | eqeltrri |  |-  { y | E. x y = ( ( F |` A ) ` x ) } e. _V |