Step |
Hyp |
Ref |
Expression |
1 |
|
fvresex.1 |
|- A e. _V |
2 |
|
ssv |
|- A C_ _V |
3 |
|
resmpt |
|- ( A C_ _V -> ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) |
5 |
4
|
fveq1i |
|- ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( z e. A |-> ( F ` z ) ) ` x ) |
6 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
7 |
|
eqid |
|- ( z e. _V |-> ( F ` z ) ) = ( z e. _V |-> ( F ` z ) ) |
8 |
|
fvex |
|- ( F ` x ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( x e. _V -> ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) ) |
10 |
9
|
elv |
|- ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) |
11 |
|
fveqres |
|- ( ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) -> ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) ) |
12 |
10 11
|
ax-mp |
|- ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) |
13 |
5 12
|
eqtr3i |
|- ( ( z e. A |-> ( F ` z ) ) ` x ) = ( ( F |` A ) ` x ) |
14 |
13
|
eqeq2i |
|- ( y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> y = ( ( F |` A ) ` x ) ) |
15 |
14
|
exbii |
|- ( E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> E. x y = ( ( F |` A ) ` x ) ) |
16 |
15
|
abbii |
|- { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } = { y | E. x y = ( ( F |` A ) ` x ) } |
17 |
1
|
mptex |
|- ( z e. A |-> ( F ` z ) ) e. _V |
18 |
17
|
fvclex |
|- { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } e. _V |
19 |
16 18
|
eqeltrri |
|- { y | E. x y = ( ( F |` A ) ` x ) } e. _V |