Metamath Proof Explorer


Theorem fvressn

Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion fvressn
|- ( X e. V -> ( ( F |` { X } ) ` X ) = ( F ` X ) )

Proof

Step Hyp Ref Expression
1 snidg
 |-  ( X e. V -> X e. { X } )
2 1 fvresd
 |-  ( X e. V -> ( ( F |` { X } ) ` X ) = ( F ` X ) )