Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( F ` X ) = (/) -> ( F ` X ) = (/) ) |
2 |
|
ssun2 |
|- { (/) } C_ ( ran F u. { (/) } ) |
3 |
|
0ex |
|- (/) e. _V |
4 |
3
|
snid |
|- (/) e. { (/) } |
5 |
2 4
|
sselii |
|- (/) e. ( ran F u. { (/) } ) |
6 |
1 5
|
eqeltrdi |
|- ( ( F ` X ) = (/) -> ( F ` X ) e. ( ran F u. { (/) } ) ) |
7 |
|
ssun1 |
|- ran F C_ ( ran F u. { (/) } ) |
8 |
|
fvprc |
|- ( -. X e. _V -> ( F ` X ) = (/) ) |
9 |
8
|
con1i |
|- ( -. ( F ` X ) = (/) -> X e. _V ) |
10 |
|
fvexd |
|- ( -. ( F ` X ) = (/) -> ( F ` X ) e. _V ) |
11 |
|
fvbr0 |
|- ( X F ( F ` X ) \/ ( F ` X ) = (/) ) |
12 |
11
|
ori |
|- ( -. X F ( F ` X ) -> ( F ` X ) = (/) ) |
13 |
12
|
con1i |
|- ( -. ( F ` X ) = (/) -> X F ( F ` X ) ) |
14 |
|
brelrng |
|- ( ( X e. _V /\ ( F ` X ) e. _V /\ X F ( F ` X ) ) -> ( F ` X ) e. ran F ) |
15 |
9 10 13 14
|
syl3anc |
|- ( -. ( F ` X ) = (/) -> ( F ` X ) e. ran F ) |
16 |
7 15
|
sselid |
|- ( -. ( F ` X ) = (/) -> ( F ` X ) e. ( ran F u. { (/) } ) ) |
17 |
6 16
|
pm2.61i |
|- ( F ` X ) e. ( ran F u. { (/) } ) |