Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
|- ( F " { X } ) = ran ( F |` { X } ) |
2 |
1
|
eleq2i |
|- ( ( F ` X ) e. ( F " { X } ) <-> ( F ` X ) e. ran ( F |` { X } ) ) |
3 |
|
opeq1 |
|- ( x = X -> <. x , ( F ` X ) >. = <. X , ( F ` X ) >. ) |
4 |
3
|
eleq1d |
|- ( x = X -> ( <. x , ( F ` X ) >. e. F <-> <. X , ( F ` X ) >. e. F ) ) |
5 |
4
|
spcegv |
|- ( X e. V -> ( <. X , ( F ` X ) >. e. F -> E. x <. x , ( F ` X ) >. e. F ) ) |
6 |
|
fvex |
|- ( F ` X ) e. _V |
7 |
|
elimasng |
|- ( ( X e. V /\ ( F ` X ) e. _V ) -> ( ( F ` X ) e. ( F " { X } ) <-> <. X , ( F ` X ) >. e. F ) ) |
8 |
6 7
|
mpan2 |
|- ( X e. V -> ( ( F ` X ) e. ( F " { X } ) <-> <. X , ( F ` X ) >. e. F ) ) |
9 |
|
elrn2g |
|- ( ( F ` X ) e. _V -> ( ( F ` X ) e. ran F <-> E. x <. x , ( F ` X ) >. e. F ) ) |
10 |
6 9
|
mp1i |
|- ( X e. V -> ( ( F ` X ) e. ran F <-> E. x <. x , ( F ` X ) >. e. F ) ) |
11 |
5 8 10
|
3imtr4d |
|- ( X e. V -> ( ( F ` X ) e. ( F " { X } ) -> ( F ` X ) e. ran F ) ) |
12 |
2 11
|
syl5bir |
|- ( X e. V -> ( ( F ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) ) |