| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ima |  |-  ( F " { X } ) = ran ( F |` { X } ) | 
						
							| 2 | 1 | eleq2i |  |-  ( ( F ` X ) e. ( F " { X } ) <-> ( F ` X ) e. ran ( F |` { X } ) ) | 
						
							| 3 |  | opeq1 |  |-  ( x = X -> <. x , ( F ` X ) >. = <. X , ( F ` X ) >. ) | 
						
							| 4 | 3 | eleq1d |  |-  ( x = X -> ( <. x , ( F ` X ) >. e. F <-> <. X , ( F ` X ) >. e. F ) ) | 
						
							| 5 | 4 | spcegv |  |-  ( X e. V -> ( <. X , ( F ` X ) >. e. F -> E. x <. x , ( F ` X ) >. e. F ) ) | 
						
							| 6 |  | fvex |  |-  ( F ` X ) e. _V | 
						
							| 7 |  | elimasng |  |-  ( ( X e. V /\ ( F ` X ) e. _V ) -> ( ( F ` X ) e. ( F " { X } ) <-> <. X , ( F ` X ) >. e. F ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( X e. V -> ( ( F ` X ) e. ( F " { X } ) <-> <. X , ( F ` X ) >. e. F ) ) | 
						
							| 9 |  | elrn2g |  |-  ( ( F ` X ) e. _V -> ( ( F ` X ) e. ran F <-> E. x <. x , ( F ` X ) >. e. F ) ) | 
						
							| 10 | 6 9 | mp1i |  |-  ( X e. V -> ( ( F ` X ) e. ran F <-> E. x <. x , ( F ` X ) >. e. F ) ) | 
						
							| 11 | 5 8 10 | 3imtr4d |  |-  ( X e. V -> ( ( F ` X ) e. ( F " { X } ) -> ( F ` X ) e. ran F ) ) | 
						
							| 12 | 2 11 | biimtrrid |  |-  ( X e. V -> ( ( F ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) ) |