Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994) (Proof shortened by BJ, 25-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvsn.1 | |- A e. _V |
|
| fvsn.2 | |- B e. _V |
||
| Assertion | fvsn | |- ( { <. A , B >. } ` A ) = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsn.1 | |- A e. _V |
|
| 2 | fvsn.2 | |- B e. _V |
|
| 3 | fvsng | |- ( ( A e. _V /\ B e. _V ) -> ( { <. A , B >. } ` A ) = B ) |
|
| 4 | 1 2 3 | mp2an | |- ( { <. A , B >. } ` A ) = B |