Metamath Proof Explorer


Theorem fvsn

Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994) (Proof shortened by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsn.1
|- A e. _V
fvsn.2
|- B e. _V
Assertion fvsn
|- ( { <. A , B >. } ` A ) = B

Proof

Step Hyp Ref Expression
1 fvsn.1
 |-  A e. _V
2 fvsn.2
 |-  B e. _V
3 fvsng
 |-  ( ( A e. _V /\ B e. _V ) -> ( { <. A , B >. } ` A ) = B )
4 1 2 3 mp2an
 |-  ( { <. A , B >. } ` A ) = B