Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012) (Proof shortened by BJ, 25-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | fvsng | |- ( ( A e. V /\ B e. W ) -> ( { <. A , B >. } ` A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng | |- ( ( A e. V /\ B e. W ) -> Fun { <. A , B >. } ) |
|
2 | opex | |- <. A , B >. e. _V |
|
3 | 2 | snid | |- <. A , B >. e. { <. A , B >. } |
4 | funopfv | |- ( Fun { <. A , B >. } -> ( <. A , B >. e. { <. A , B >. } -> ( { <. A , B >. } ` A ) = B ) ) |
|
5 | 1 3 4 | mpisyl | |- ( ( A e. V /\ B e. W ) -> ( { <. A , B >. } ` A ) = B ) |