Metamath Proof Explorer


Theorem fvsng

Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012) (Proof shortened by BJ, 25-Feb-2023)

Ref Expression
Assertion fvsng
|- ( ( A e. V /\ B e. W ) -> ( { <. A , B >. } ` A ) = B )

Proof

Step Hyp Ref Expression
1 funsng
 |-  ( ( A e. V /\ B e. W ) -> Fun { <. A , B >. } )
2 opex
 |-  <. A , B >. e. _V
3 2 snid
 |-  <. A , B >. e. { <. A , B >. }
4 funopfv
 |-  ( Fun { <. A , B >. } -> ( <. A , B >. e. { <. A , B >. } -> ( { <. A , B >. } ` A ) = B ) )
5 1 3 4 mpisyl
 |-  ( ( A e. V /\ B e. W ) -> ( { <. A , B >. } ` A ) = B )