| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvsnun.1 |
|- ( ph -> A e. V ) |
| 2 |
|
fvsnun.2 |
|- ( ph -> B e. W ) |
| 3 |
|
fvsnun.3 |
|- G = ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |
| 4 |
3
|
reseq1i |
|- ( G |` { A } ) = ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` { A } ) |
| 5 |
|
resundir |
|- ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` { A } ) = ( ( { <. A , B >. } |` { A } ) u. ( ( F |` ( C \ { A } ) ) |` { A } ) ) |
| 6 |
|
disjdifr |
|- ( ( C \ { A } ) i^i { A } ) = (/) |
| 7 |
|
resdisj |
|- ( ( ( C \ { A } ) i^i { A } ) = (/) -> ( ( F |` ( C \ { A } ) ) |` { A } ) = (/) ) |
| 8 |
6 7
|
ax-mp |
|- ( ( F |` ( C \ { A } ) ) |` { A } ) = (/) |
| 9 |
8
|
uneq2i |
|- ( ( { <. A , B >. } |` { A } ) u. ( ( F |` ( C \ { A } ) ) |` { A } ) ) = ( ( { <. A , B >. } |` { A } ) u. (/) ) |
| 10 |
|
un0 |
|- ( ( { <. A , B >. } |` { A } ) u. (/) ) = ( { <. A , B >. } |` { A } ) |
| 11 |
9 10
|
eqtri |
|- ( ( { <. A , B >. } |` { A } ) u. ( ( F |` ( C \ { A } ) ) |` { A } ) ) = ( { <. A , B >. } |` { A } ) |
| 12 |
5 11
|
eqtri |
|- ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` { A } ) = ( { <. A , B >. } |` { A } ) |
| 13 |
4 12
|
eqtri |
|- ( G |` { A } ) = ( { <. A , B >. } |` { A } ) |
| 14 |
13
|
fveq1i |
|- ( ( G |` { A } ) ` A ) = ( ( { <. A , B >. } |` { A } ) ` A ) |
| 15 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 16 |
1 15
|
syl |
|- ( ph -> A e. { A } ) |
| 17 |
16
|
fvresd |
|- ( ph -> ( ( G |` { A } ) ` A ) = ( G ` A ) ) |
| 18 |
16
|
fvresd |
|- ( ph -> ( ( { <. A , B >. } |` { A } ) ` A ) = ( { <. A , B >. } ` A ) ) |
| 19 |
|
fvsng |
|- ( ( A e. V /\ B e. W ) -> ( { <. A , B >. } ` A ) = B ) |
| 20 |
1 2 19
|
syl2anc |
|- ( ph -> ( { <. A , B >. } ` A ) = B ) |
| 21 |
18 20
|
eqtrd |
|- ( ph -> ( ( { <. A , B >. } |` { A } ) ` A ) = B ) |
| 22 |
14 17 21
|
3eqtr3a |
|- ( ph -> ( G ` A ) = B ) |