Step |
Hyp |
Ref |
Expression |
1 |
|
fvtp1.1 |
|- A e. _V |
2 |
|
fvtp1.4 |
|- D e. _V |
3 |
|
df-tp |
|- { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) |
4 |
3
|
fveq1i |
|- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) |
5 |
|
necom |
|- ( A =/= C <-> C =/= A ) |
6 |
|
fvunsn |
|- ( C =/= A -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
7 |
5 6
|
sylbi |
|- ( A =/= C -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
8 |
1 2
|
fvpr1 |
|- ( A =/= B -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
9 |
7 8
|
sylan9eqr |
|- ( ( A =/= B /\ A =/= C ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = D ) |
10 |
4 9
|
eqtrid |
|- ( ( A =/= B /\ A =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |