| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvtp1.1 |  |-  A e. _V | 
						
							| 2 |  | fvtp1.4 |  |-  D e. _V | 
						
							| 3 |  | df-tp |  |-  { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) | 
						
							| 4 | 3 | fveq1i |  |-  ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) | 
						
							| 5 |  | necom |  |-  ( A =/= C <-> C =/= A ) | 
						
							| 6 |  | fvunsn |  |-  ( C =/= A -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) | 
						
							| 7 | 5 6 | sylbi |  |-  ( A =/= C -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) | 
						
							| 8 | 1 2 | fvpr1 |  |-  ( A =/= B -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) | 
						
							| 9 | 7 8 | sylan9eqr |  |-  ( ( A =/= B /\ A =/= C ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = D ) | 
						
							| 10 | 4 9 | eqtrid |  |-  ( ( A =/= B /\ A =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |