Step |
Hyp |
Ref |
Expression |
1 |
|
df-tp |
|- { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) |
2 |
1
|
fveq1i |
|- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) |
3 |
|
necom |
|- ( A =/= C <-> C =/= A ) |
4 |
|
fvunsn |
|- ( C =/= A -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
5 |
3 4
|
sylbi |
|- ( A =/= C -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
6 |
5
|
ad2antll |
|- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
7 |
|
fvpr1g |
|- ( ( A e. V /\ D e. W /\ A =/= B ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
8 |
7
|
3expa |
|- ( ( ( A e. V /\ D e. W ) /\ A =/= B ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
9 |
8
|
adantrr |
|- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
10 |
6 9
|
eqtrd |
|- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = D ) |
11 |
2 10
|
eqtrid |
|- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |