| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-tp |  |-  { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) | 
						
							| 2 | 1 | fveq1i |  |-  ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) | 
						
							| 3 |  | necom |  |-  ( A =/= C <-> C =/= A ) | 
						
							| 4 |  | fvunsn |  |-  ( C =/= A -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) | 
						
							| 5 | 3 4 | sylbi |  |-  ( A =/= C -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) | 
						
							| 6 | 5 | ad2antll |  |-  ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) | 
						
							| 7 |  | fvpr1g |  |-  ( ( A e. V /\ D e. W /\ A =/= B ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) | 
						
							| 8 | 7 | 3expa |  |-  ( ( ( A e. V /\ D e. W ) /\ A =/= B ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) | 
						
							| 9 | 8 | adantrr |  |-  ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) | 
						
							| 10 | 6 9 | eqtrd |  |-  ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = D ) | 
						
							| 11 | 2 10 | eqtrid |  |-  ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |