| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tprot |  |-  { <. A , D >. , <. B , E >. , <. C , F >. } = { <. B , E >. , <. C , F >. , <. A , D >. } | 
						
							| 2 | 1 | fveq1i |  |-  ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) | 
						
							| 3 |  | necom |  |-  ( A =/= B <-> B =/= A ) | 
						
							| 4 |  | fvtp1g |  |-  ( ( ( B e. V /\ E e. W ) /\ ( B =/= C /\ B =/= A ) ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) | 
						
							| 5 | 4 | expcom |  |-  ( ( B =/= C /\ B =/= A ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) | 
						
							| 6 | 5 | ancoms |  |-  ( ( B =/= A /\ B =/= C ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) | 
						
							| 7 | 3 6 | sylanb |  |-  ( ( A =/= B /\ B =/= C ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) | 
						
							| 8 | 7 | impcom |  |-  ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |