Step |
Hyp |
Ref |
Expression |
1 |
|
tprot |
|- { <. A , D >. , <. B , E >. , <. C , F >. } = { <. B , E >. , <. C , F >. , <. A , D >. } |
2 |
1
|
fveq1i |
|- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) |
3 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
4 |
|
fvtp1g |
|- ( ( ( B e. V /\ E e. W ) /\ ( B =/= C /\ B =/= A ) ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
5 |
4
|
expcom |
|- ( ( B =/= C /\ B =/= A ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) |
6 |
5
|
ancoms |
|- ( ( B =/= A /\ B =/= C ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) |
7 |
3 6
|
sylanb |
|- ( ( A =/= B /\ B =/= C ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) |
8 |
7
|
impcom |
|- ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
9 |
2 8
|
eqtrid |
|- ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |