| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvtp3.1 |  |-  C e. _V | 
						
							| 2 |  | fvtp3.4 |  |-  F e. _V | 
						
							| 3 |  | tprot |  |-  { <. A , D >. , <. B , E >. , <. C , F >. } = { <. B , E >. , <. C , F >. , <. A , D >. } | 
						
							| 4 | 3 | fveq1i |  |-  ( { <. A , D >. , <. B , E >. , <. C , F >. } ` C ) = ( { <. B , E >. , <. C , F >. , <. A , D >. } ` C ) | 
						
							| 5 |  | necom |  |-  ( A =/= C <-> C =/= A ) | 
						
							| 6 | 1 2 | fvtp2 |  |-  ( ( B =/= C /\ C =/= A ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` C ) = F ) | 
						
							| 7 | 5 6 | sylan2b |  |-  ( ( B =/= C /\ A =/= C ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` C ) = F ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( A =/= C /\ B =/= C ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` C ) = F ) | 
						
							| 9 | 4 8 | eqtrid |  |-  ( ( A =/= C /\ B =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` C ) = F ) |