| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> Fun F ) | 
						
							| 3 |  | fnfun |  |-  ( G Fn B -> Fun G ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> Fun G ) | 
						
							| 5 |  | fndm |  |-  ( F Fn A -> dom F = A ) | 
						
							| 6 |  | fndm |  |-  ( G Fn B -> dom G = B ) | 
						
							| 7 | 5 6 | ineqan12d |  |-  ( ( F Fn A /\ G Fn B ) -> ( dom F i^i dom G ) = ( A i^i B ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( ( F Fn A /\ G Fn B ) -> ( ( dom F i^i dom G ) = (/) <-> ( A i^i B ) = (/) ) ) | 
						
							| 9 | 8 | biimprd |  |-  ( ( F Fn A /\ G Fn B ) -> ( ( A i^i B ) = (/) -> ( dom F i^i dom G ) = (/) ) ) | 
						
							| 10 | 9 | adantrd |  |-  ( ( F Fn A /\ G Fn B ) -> ( ( ( A i^i B ) = (/) /\ X e. A ) -> ( dom F i^i dom G ) = (/) ) ) | 
						
							| 11 | 10 | 3impia |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( dom F i^i dom G ) = (/) ) | 
						
							| 12 |  | fvun |  |-  ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) ` X ) = ( ( F ` X ) u. ( G ` X ) ) ) | 
						
							| 13 | 2 4 11 12 | syl21anc |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( ( F ` X ) u. ( G ` X ) ) ) | 
						
							| 14 |  | disjel |  |-  ( ( ( A i^i B ) = (/) /\ X e. A ) -> -. X e. B ) | 
						
							| 15 | 14 | adantl |  |-  ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. B ) | 
						
							| 16 | 6 | eleq2d |  |-  ( G Fn B -> ( X e. dom G <-> X e. B ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( X e. dom G <-> X e. B ) ) | 
						
							| 18 | 15 17 | mtbird |  |-  ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. dom G ) | 
						
							| 19 | 18 | 3adant1 |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. dom G ) | 
						
							| 20 |  | ndmfv |  |-  ( -. X e. dom G -> ( G ` X ) = (/) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( G ` X ) = (/) ) | 
						
							| 22 | 21 | uneq2d |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F ` X ) u. ( G ` X ) ) = ( ( F ` X ) u. (/) ) ) | 
						
							| 23 |  | un0 |  |-  ( ( F ` X ) u. (/) ) = ( F ` X ) | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F ` X ) u. ( G ` X ) ) = ( F ` X ) ) | 
						
							| 25 | 13 24 | eqtrd |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( F ` X ) ) |