Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
2 |
1
|
3ad2ant1 |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> Fun F ) |
3 |
|
fnfun |
|- ( G Fn B -> Fun G ) |
4 |
3
|
3ad2ant2 |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> Fun G ) |
5 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
6 |
|
fndm |
|- ( G Fn B -> dom G = B ) |
7 |
5 6
|
ineqan12d |
|- ( ( F Fn A /\ G Fn B ) -> ( dom F i^i dom G ) = ( A i^i B ) ) |
8 |
7
|
eqeq1d |
|- ( ( F Fn A /\ G Fn B ) -> ( ( dom F i^i dom G ) = (/) <-> ( A i^i B ) = (/) ) ) |
9 |
8
|
biimprd |
|- ( ( F Fn A /\ G Fn B ) -> ( ( A i^i B ) = (/) -> ( dom F i^i dom G ) = (/) ) ) |
10 |
9
|
adantrd |
|- ( ( F Fn A /\ G Fn B ) -> ( ( ( A i^i B ) = (/) /\ X e. A ) -> ( dom F i^i dom G ) = (/) ) ) |
11 |
10
|
3impia |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( dom F i^i dom G ) = (/) ) |
12 |
|
fvun |
|- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) ` X ) = ( ( F ` X ) u. ( G ` X ) ) ) |
13 |
2 4 11 12
|
syl21anc |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( ( F ` X ) u. ( G ` X ) ) ) |
14 |
|
disjel |
|- ( ( ( A i^i B ) = (/) /\ X e. A ) -> -. X e. B ) |
15 |
14
|
adantl |
|- ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. B ) |
16 |
6
|
eleq2d |
|- ( G Fn B -> ( X e. dom G <-> X e. B ) ) |
17 |
16
|
adantr |
|- ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( X e. dom G <-> X e. B ) ) |
18 |
15 17
|
mtbird |
|- ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. dom G ) |
19 |
18
|
3adant1 |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. dom G ) |
20 |
|
ndmfv |
|- ( -. X e. dom G -> ( G ` X ) = (/) ) |
21 |
19 20
|
syl |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( G ` X ) = (/) ) |
22 |
21
|
uneq2d |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F ` X ) u. ( G ` X ) ) = ( ( F ` X ) u. (/) ) ) |
23 |
|
un0 |
|- ( ( F ` X ) u. (/) ) = ( F ` X ) |
24 |
22 23
|
eqtrdi |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F ` X ) u. ( G ` X ) ) = ( F ` X ) ) |
25 |
13 24
|
eqtrd |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( F ` X ) ) |