Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|- ( F u. G ) = ( G u. F ) |
2 |
1
|
fveq1i |
|- ( ( F u. G ) ` X ) = ( ( G u. F ) ` X ) |
3 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
4 |
3
|
eqeq1i |
|- ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) |
5 |
4
|
anbi1i |
|- ( ( ( A i^i B ) = (/) /\ X e. B ) <-> ( ( B i^i A ) = (/) /\ X e. B ) ) |
6 |
|
fvun1 |
|- ( ( G Fn B /\ F Fn A /\ ( ( B i^i A ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) |
7 |
5 6
|
syl3an3b |
|- ( ( G Fn B /\ F Fn A /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) |
8 |
7
|
3com12 |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) |
9 |
2 8
|
eqtrid |
|- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( F u. G ) ` X ) = ( G ` X ) ) |