| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom |  |-  ( F u. G ) = ( G u. F ) | 
						
							| 2 | 1 | fveq1i |  |-  ( ( F u. G ) ` X ) = ( ( G u. F ) ` X ) | 
						
							| 3 |  | incom |  |-  ( A i^i B ) = ( B i^i A ) | 
						
							| 4 | 3 | eqeq1i |  |-  ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) | 
						
							| 5 | 4 | anbi1i |  |-  ( ( ( A i^i B ) = (/) /\ X e. B ) <-> ( ( B i^i A ) = (/) /\ X e. B ) ) | 
						
							| 6 |  | fvun1 |  |-  ( ( G Fn B /\ F Fn A /\ ( ( B i^i A ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) | 
						
							| 7 | 5 6 | syl3an3b |  |-  ( ( G Fn B /\ F Fn A /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) | 
						
							| 8 | 7 | 3com12 |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( F u. G ) ` X ) = ( G ` X ) ) |