Step |
Hyp |
Ref |
Expression |
1 |
|
resundir |
|- ( ( A u. { <. B , C >. } ) |` { D } ) = ( ( A |` { D } ) u. ( { <. B , C >. } |` { D } ) ) |
2 |
|
nelsn |
|- ( B =/= D -> -. B e. { D } ) |
3 |
|
ressnop0 |
|- ( -. B e. { D } -> ( { <. B , C >. } |` { D } ) = (/) ) |
4 |
2 3
|
syl |
|- ( B =/= D -> ( { <. B , C >. } |` { D } ) = (/) ) |
5 |
4
|
uneq2d |
|- ( B =/= D -> ( ( A |` { D } ) u. ( { <. B , C >. } |` { D } ) ) = ( ( A |` { D } ) u. (/) ) ) |
6 |
|
un0 |
|- ( ( A |` { D } ) u. (/) ) = ( A |` { D } ) |
7 |
5 6
|
eqtrdi |
|- ( B =/= D -> ( ( A |` { D } ) u. ( { <. B , C >. } |` { D } ) ) = ( A |` { D } ) ) |
8 |
1 7
|
eqtrid |
|- ( B =/= D -> ( ( A u. { <. B , C >. } ) |` { D } ) = ( A |` { D } ) ) |
9 |
8
|
fveq1d |
|- ( B =/= D -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A |` { D } ) ` D ) ) |
10 |
|
fvressn |
|- ( D e. _V -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A u. { <. B , C >. } ) ` D ) ) |
11 |
|
fvprc |
|- ( -. D e. _V -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = (/) ) |
12 |
|
fvprc |
|- ( -. D e. _V -> ( ( A u. { <. B , C >. } ) ` D ) = (/) ) |
13 |
11 12
|
eqtr4d |
|- ( -. D e. _V -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A u. { <. B , C >. } ) ` D ) ) |
14 |
10 13
|
pm2.61i |
|- ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A u. { <. B , C >. } ) ` D ) |
15 |
|
fvressn |
|- ( D e. _V -> ( ( A |` { D } ) ` D ) = ( A ` D ) ) |
16 |
|
fvprc |
|- ( -. D e. _V -> ( ( A |` { D } ) ` D ) = (/) ) |
17 |
|
fvprc |
|- ( -. D e. _V -> ( A ` D ) = (/) ) |
18 |
16 17
|
eqtr4d |
|- ( -. D e. _V -> ( ( A |` { D } ) ` D ) = ( A ` D ) ) |
19 |
15 18
|
pm2.61i |
|- ( ( A |` { D } ) ` D ) = ( A ` D ) |
20 |
9 14 19
|
3eqtr3g |
|- ( B =/= D -> ( ( A u. { <. B , C >. } ) ` D ) = ( A ` D ) ) |