| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvvolicof.f |
|- ( ph -> F : A --> ( RR* X. RR* ) ) |
| 2 |
|
fvvolicof.x |
|- ( ph -> X e. A ) |
| 3 |
1
|
ffund |
|- ( ph -> Fun F ) |
| 4 |
1
|
fdmd |
|- ( ph -> dom F = A ) |
| 5 |
4
|
eqcomd |
|- ( ph -> A = dom F ) |
| 6 |
2 5
|
eleqtrd |
|- ( ph -> X e. dom F ) |
| 7 |
|
fvco |
|- ( ( Fun F /\ X e. dom F ) -> ( ( ( vol o. [,) ) o. F ) ` X ) = ( ( vol o. [,) ) ` ( F ` X ) ) ) |
| 8 |
3 6 7
|
syl2anc |
|- ( ph -> ( ( ( vol o. [,) ) o. F ) ` X ) = ( ( vol o. [,) ) ` ( F ` X ) ) ) |
| 9 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
| 10 |
|
ffun |
|- ( [,) : ( RR* X. RR* ) --> ~P RR* -> Fun [,) ) |
| 11 |
9 10
|
ax-mp |
|- Fun [,) |
| 12 |
11
|
a1i |
|- ( ph -> Fun [,) ) |
| 13 |
1 2
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( RR* X. RR* ) ) |
| 14 |
9
|
fdmi |
|- dom [,) = ( RR* X. RR* ) |
| 15 |
13 14
|
eleqtrrdi |
|- ( ph -> ( F ` X ) e. dom [,) ) |
| 16 |
|
fvco |
|- ( ( Fun [,) /\ ( F ` X ) e. dom [,) ) -> ( ( vol o. [,) ) ` ( F ` X ) ) = ( vol ` ( [,) ` ( F ` X ) ) ) ) |
| 17 |
12 15 16
|
syl2anc |
|- ( ph -> ( ( vol o. [,) ) ` ( F ` X ) ) = ( vol ` ( [,) ` ( F ` X ) ) ) ) |
| 18 |
|
df-ov |
|- ( ( 1st ` ( F ` X ) ) [,) ( 2nd ` ( F ` X ) ) ) = ( [,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) |
| 19 |
18
|
a1i |
|- ( ph -> ( ( 1st ` ( F ` X ) ) [,) ( 2nd ` ( F ` X ) ) ) = ( [,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) ) |
| 20 |
|
1st2nd2 |
|- ( ( F ` X ) e. ( RR* X. RR* ) -> ( F ` X ) = <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) |
| 21 |
13 20
|
syl |
|- ( ph -> ( F ` X ) = <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) |
| 22 |
21
|
eqcomd |
|- ( ph -> <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. = ( F ` X ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( [,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) = ( [,) ` ( F ` X ) ) ) |
| 24 |
19 23
|
eqtr2d |
|- ( ph -> ( [,) ` ( F ` X ) ) = ( ( 1st ` ( F ` X ) ) [,) ( 2nd ` ( F ` X ) ) ) ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( vol ` ( [,) ` ( F ` X ) ) ) = ( vol ` ( ( 1st ` ( F ` X ) ) [,) ( 2nd ` ( F ` X ) ) ) ) ) |
| 26 |
8 17 25
|
3eqtrd |
|- ( ph -> ( ( ( vol o. [,) ) o. F ) ` X ) = ( vol ` ( ( 1st ` ( F ` X ) ) [,) ( 2nd ` ( F ` X ) ) ) ) ) |